

Page 1 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

USER MANUAL

Page 2 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Command Professional Edition

User Manual

Version 2.4

Last Updated October 13, 2024

Page 3 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Table of Contents
 .. 1

INTRODUCTION .. 7

Recommended hardware & OS specs ... 7

Checking hardware ... 7

Installation & Hardware Notes ... 8

INSTALLATION & FILE/FOLDER PATHS ... 9

LICENSE REVOKE .. 10

(OPTIONAL) Requesting a new license from the website .. 11

WEGO MULTIPLAYER ... 12

Basic Setup .. 12

Scenario Selection ... 12

Network Setup .. 12

Server Setup .. 12

Client Setup and Gameplay ... 14

“MP-Only” mode: Connecting non-Premium instances to MP on a secure network 20

The Umpire role .. 21

The Observer role ... 29

REAL-TIME MULTIPLAYER (RTMP) ... 30

Introduction .. 30

Concepts ... 30

Server and Client Roles ... 31

Client Roles ... 31

Network Architecture ... 31

System Requirements ... 31

Hardware Requirements ... 32

Server Recommendations ... 32

Client Recommendations .. 32

Network Architecture ... 32

Client-Server Model .. 32

How to find the Server’s IP (Using Windows UI)... 32

How to find the Server’s IP (Using Windows Command Line) .. 34

Port Configurations and Firewall Settings .. 34

Installation and Setup ... 35

Server Setup .. 35

Page 4 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Configuring Server Settings ... 38

Client Setup ... 38

Verifying Command.exe Installation ... 38

Configuring Client Settings (RealtimeMP.ini) .. 38

RealtimeMP.ini examples ... 39

Network Configuration ... 41

Starting an RTMP Session ... 41

Launching the Server .. 42

Selecting and Loading a Scenario .. 43

Server UI Overviews .. 44

Connecting Clients .. 46

Joining a Game .. 46

Player Configuration (without RealtimeMP.ini) .. 47

Gameplay Mechanics .. 48

The RTMP Ribbon .. 49

Absolute Control (AC) ... 51

Autosaves / Rewind .. 51

Order Issuing and Execution ... 51

Viewports .. 51

Switching Sides (or preventing switching sides) and God's Eye View .. 53

Communication Tools (Lack Thereof) ... 53

Saving Games .. 53

RTMP Ribbon Named Autosaves .. 54

Server Save Dialog ... 55

Absolute Control Save Method ... 55

Loading Games .. 55

Handling Disconnections ... 56

Performance Optimization.. 57

Autosave and Rewind Feature .. 57

Accessing and Loading Autosaves ... 58

Using the Rewind Feature ... 58

Absolute Control ... 59

Activating Absolute Control .. 59

COMMAND-LINE INTERFACE ... 60

Command-Line Arguments ... 60

Page 5 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

GENERAL SYSTEM & INFRASTRUCTURE ... 63

Additional configuration settings .. 63

Running CPE in high-DPI (4K / UHD) monitors .. 64

PRO-EXCLUSIVE SIMULATION & UI FEATURES .. 66

Communications jamming & disruption ... 66

Fixed Side Colors ... 66

The Amphibious Planner, Operation Planner & Serial Editor ... 68

Multiple Coordinate System Options .. 68

Export Losses and Expenditures ... 68

Custom Unit Icons ... 69

Miscellaneous ... 73

Pitch Kinematics .. 73

DLZ-check override ... 73

ANALYSIS & DATA EXPORT ... 74

Interactive analysis & event export .. 74

Customizing output destination & export rate ... 77

Speed bands: Dynamic export rate based on unit speed ... 79

Interactive analysis settings window .. 84

Save scenario as XML by default ... 85

Non-interactive (Monte Carlo) analysis .. 86

Performance tune-up: Avoiding common pitfalls in interactive & Monte-Carlo analysis 88

Customizing simulation fidelity ... 91

Multiple-instance execution & folder redirection .. 92

Tacview visualization .. 94

SIMDIS visualization .. 96

On-demand imagery ... 97

Custom Overlays 101 .. 98

DATA & MODEL EDITING ... 100

Database Editor ... 100

DBTools ... 100

Migrating existing DBs to new schema ... 100

Migrating a scenario to a new custom database .. 100

Lua I/O ... 102

XML import/export ... 102

Mechanics Overrides .. 104

Page 6 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Lua Event Hooks .. 110

INTEROPERABILITY ... 114

DIS support .. 114

TCP/IP-Socket access to Lua API ... 119

Lua TCP/IP connection examples .. 120

Using .NET libraries ... 122

FLOATING LICENSE MANAGER ... 123

APPENDICES ... 126

Appendix 1: Sensor model factors (except sonar) .. 126

Appendix 2: The sonar model in Command PE ... 128

Appendix 3: The Amphibious Planner, Operation Planner and Serial Editor 137

Appendix 4: Complete Sensor Detection Reports .. 166

Appendix 5: Custom Terrain Editing: How to make a fictional island... 171

Appendix 6: CPE Space Operations – Present and Future .. 178

Page 7 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

INTRODUCTION

Command Professional Edition v2 (CPE 2) is the professional-oriented superset of Command:

Modern Operations (CMO), MatrixGames’ flagship commercial wargame of modern cross-domain

military operations. CMO is the successor to Command: Modern Air/Naval Operations, the wargame

on which CPE 1.x is based. General information about CMO can be obtained on its product page at

MatrixGames: https://www.matrixgames.com/game/command-modern-operations

This manual acts as an addition to the existing documentation for CMO. The commercial CMO user

manual is bundled together with the software and is also accompanying this CPE manual.

The CMO manual can also be located here:

https://cdn.akamai.steamstatic.com/steam/apps/1076160/manuals/CMO_manual_EBOOK.pdf

As a rule, this manual avoids referencing features that are already present on the commercial

version of CMO, as it is assumed the reader is already familiar with them. There are exceptions to

this rule, for example when addressing a feature that exists in the commercial version but is further

enhanced on the professional and/or academic edition.

Throughout this manual, the terms “Command Professional Edition”, “Command PE” and “CPE” are

used interchangeably to refer to the pro-oriented superset of CMO.

Users are highly encouraged to read the release notes of past, present and future CPE releases in order

to become familiar with changes and additions to the software.

Recommended hardware & OS specs

• Operating System: Windows 10+

• Processor: Quad-core, 4th-generation Intel or equivalent

• Memory: 8+ GB RAM

• Graphics: Direct-X 11 compatible GeForce GT1030+ or equivalent (less powerful GPUs may

also work but with inconsistent performance characteristics)

• Direct-X: Version 11

• Disk Storage: (Core install) 40 GB available space initially; likely to grow as map tiles are

downloaded on-demand and cached locally.

Checking hardware

It is possible to check if a machine's processor and GPU support the minimum specifications by

typing "dxdiag" into the Start Menu search bar and launching the dxdiag program.

The System tab of the dxdiag (DirectX Diagnostic Tool) program should indicate in parentheses next

to "Processor:" that the processor has at least 4 logical CPUs and indicate next to "Memory:" that

the system has at least 8192MB of RAM. The Display tab's Device section should indicate next to

https://www.matrixgames.com/game/command-modern-operations
https://cdn.akamai.steamstatic.com/steam/apps/1076160/manuals/CMO_manual_EBOOK.pdf

Page 8 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

"Display Memory (VRAM):" that the GPU has at least 2048MB of VRAM and the Driver section

should indicate next to "Feature Levels:" that 11_0 is one of the feature levels supported.

Launching File Explorer and clicking on This PC will show available space remaining on all connected

drives. The installation drive should have at least 80GB available prior to installation. The optional

HD Pack requires an additional 160GB of disk space.

Installation & Hardware Notes

Command PE v2.3+ uses a new renderer based on DirectX 11. DirectX 11 is included in the base

install of Windows 10 and 11, so it is not necessary to install any version of DirectX separately from

Command PE.

Command PE v2.3+ requires .NET Framework 4.8 to be present. If the machine does not have .NET

4.8 or higher, it will be installed automatically during installation.

Command PE quickly loads cached map tiles from local disk and network if they are available. We

recommend using fast SSDs to take advantage of this. Likewise, if CPE is installed on a connected

computer and access to streaming maps is desired, we recommend a fast Internet connection.

Machines with multiple GPUs (e.g. laptops with discrete GPUs) that encounter slow performance or

UI issues should explicitly force their system to use the discrete GPU for running CPE (Command will

try to do this automatically but is not always guaranteed to succeed).

If no hardware GPU is found at startup, CPE will fall back to using a software renderer. However,

GPU rendering is much faster than software rendering. Using the software renderer should be

avoided if at all possible as the software renderer is an emergency backstop only.

Command PE can use as much RAM as a machine has available (Pre-v2.3 versions of CPE were

limited to using approximately 3GB of RAM). 8GB is sufficient for most scenarios, but more is

recommended for very large scenarios.

Note on VM/Cloud deployments

Command PE can be deployed on any virtual machine or cloud operations platform (such as Azure,

AWS etc.) that offers a Windows (desktop or server) OS environment as a running host. However,

care must be taken to ensure that the hardware facilities exposed to CPE within such an

environment match or exceed the minimum hardware requirements of an equivalent physical host.

This is particularly true with regards to the GPU, as some VM & cloud solutions expose a software-

mode or otherwise underwhelming GPU. If running inside a virtual machine, enabling access to GPU-

assisted rendering at the virtual machine level can be very useful for better map/UI performance.

Page 9 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

INSTALLATION & FILE/FOLDER PATHS

By default, CPE is installed in the folder path “[Program Files x86]\Command Professional Edition”,

however you can change this path during installation.

In some Windows OS installations, particularly in high-security systems where the user account is

severely restricted, executed programs are prohibited from writing on the Program Files folder and

any subfolders within it. This is problematic in the case of CPE, as the program would not be able to

wriute any information to disk (e.g. export any analysis data).

Windows provides a dedicated folder for non-user-specific writable application data, the “Program

Data” system folder (see here for a brief description: https://www.howtogeek.com/278562/what-is-

the-programdata-folder-in-windows/)

To make CPE suitable for installation and use in such environments, all the program folders in which

data is written are located on a dedicated “top-level writable folder” stored within the Program Data

tree. This folder’s path is: “[Program Data]\Command Professional Edition\Command Professional

Edition 2”. This is an example of this folder, alongside the main installation folder, after a default

installation on system drive C:

As demonstrated, while read-only data (incl. the application binaries) still reside on the [Program

Files] folder, the writable folders have instead been moved under the [Program Data] tree. This is

where you may locate generated logs, analysis-borne files, recordings etc.

https://www.howtogeek.com/278562/what-is-the-programdata-folder-in-windows/
https://www.howtogeek.com/278562/what-is-the-programdata-folder-in-windows/

Page 10 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

LICENSE REVOKE

If desired, you can revoke an existing per-machine license and have it transferred to a different

machine. To do so, contact the support team through the MPS helpdesk system.

Page 11 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

(OPTIONAL) Requesting a new license from the website

To request a new license just fill the text boxes and click “Submit”:

A new license will be issued for the chosen machine:

Page 12 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

WEGO MULTIPLAYER
(Available in PE)

CPE offers the ability to host and run a WEGO-type multiplayer session. This section describes the

steps to accomplish this.

Basic Setup
To successfully set up and play Command Multiplayer (hence described as CMP), at least two

computers are required. The computers must be connected over a TCP/IP network. All computers

must be capable of running CPE.

CMP uses a client/server architecture. One computer will act as a server, while the rest of the

computers will act as clients. The server computer can also be running a client instance at the same

time.

Scenario Selection
CMP can be used with any scenario made for command, as long as the scenario has more than one

side.

Network Setup
CMP uses a client/server architecture, this means the clients only need to connect to the server. For

most LAN applications of CMP, putting all the computers on the same network and also making sure

that no computers firewall is preventing CMP from being able to connect is sufficient to run CMP

successfully.

Server Setup
Command Multiplayer has a dedicated server application that is distinct from Command Professional

Edition’s usual executable. The dedicated server application is started by executing the file

CommandWEGOServer.exe. The server requires that a dedicated multiplayer license file

(License_MP.dat) be present when starting up, otherwise it will display a licensing error message

and exit.

Launching the dedicated server presents the user with the following window:

The left-hand side of this window is dedicated to server settings:

Page 13 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

• Minimum players: This sets the minimum number of players that have to join a session

before the scenario can start.

• Scenario time limit: If set to “True”, the server will respect the end of the scenario time limit

defined in the scenario file. Therefore, the server will not permit gameplay past the end of

the scenario. If set to “False”, the server will allow the gameplay to pass the end of the

preset time limit in the scenario. It will ignore any set time limit and just continue to play; for

some scenarios this is not desirable.

• Port: This is the TCP/IP port that is used to listen to new clients, the setting needs to be set

globally across all computers, server and client alike.

• Require umpire: If set to “True”, the Umpire role must be taken by a client before the game

session can begin. Before and after the execution phase of a turn, the Umpire has the ability

to adjudicate and alter the state of the scenario with the full power of the scenario-editor

tools. If set to “False”, once all players commit their orders, the game immediately executes

the turn and returns control to the players without any manual adjudication.

• Replay snapshot interval: This is the interval in seconds in which the server will display a

visual snapshot of what is happening in-turn for all the clients. For example, if set to 5, then

then server will present to the clients successive snapshots of “what is happening” mid-turn

every 5 seconds (of scenario time, not actual time). For large-duration turns (e.g. 10

minutes) a small second snapshot interval is not suitable, as this will result in too much

processor time and bandwidth taken up with sending snapshots from the server to the

clients. A value of 0 will completely disable the “replay snapshot” feature (this speeds up

play speed significantly).

• UPnP: This tells the server to attempt to get a external port using a compatible router. This

is an advanced feature and not necessary to be used unless the network geometry and

administrator requires the use of UPnP.

• Order Submitting Time (OST): This is the real time (in seconds) available to the player to

evaluate the situation and issue orders. This can be set to a very large value to allow the

player to carefully consider different strategies (e.g. in an MBX context), or a very short

value to force the player to make split-second decisions, or anything in between.

• Variable Turn Time (VTT): This is the simulated time (in seconds) that each turn takes.

If the game session is controlled by an umpire, the OST and VTT settings can be changed during the

pre- and post-turn adjudication steps. This allows great flexibility in the playout of the game session,

as both the order-phase and turn-phase times can be adjusted for large-timespan events (e.g. non-

eventful transit), or short-span action (weapon engagements etc.) or anything in between. If no

umpire is set, these values are set only prior to loading the desired scenario.

On the right-hand side of this window, a log of events that occur on the server is listed. In the

screenshot above, there are a number of diagnostics statements that show the server starting up.

Page 14 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

To start the server one must select a scenario; the “Select Scenario And Start” button allows one to

select a scenario. After the scenario is selected, it is loaded and the server starts to accept

connections. The server does NOT accept connections until a scenario is loaded.

The screenshot above shows what the server would look like when it is ready to accept connections.

The server is not ready until you get that server ready log entry.

At this point clients are able to connect to the server.

Client Setup and Gameplay

On the CPE start menu, select “Join Multiplayer Game”.

Page 15 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

This brings up the multiplayer window.

First off, input a username.

Then input the IP address of the dedicated server along with any custom port selection.

Then click on “Connect”.

Page 16 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Once connected to the MP server, the client will automatically receive the scenario and

database file (if it is not already present on the client system) from the server. As database

files may be large, and thus the transfer may take some time, it is recommended to have the

required database file pre-installed on the client system whenever possible.

Page 17 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The player information box now has locked in our username, and also indicates that we are not

assigned to a team:

The scenario information box indicates the name of the scenario, in this case South China Clash, as

well as the connected players. The team information box shows all the available sides in the

scenario.

Page 18 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

And the multiplayer turn box indicates that the server is currently waiting on the connected players,

this is the first turn, and that there is one player connected.

Selecting the side United States in the team information box, we can then click on “Join Team”.

After joining the specified team, the interface updates and shows that we have control over the

United States side. The server has sent us our picture of the battlefield on the main CPE map

window:

Page 19 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

We can now issue orders to units on our side, just like in single-player mode. The game is paused

while we issue orders.

We can use any part of Command’s UI to control our forces, including assigning missions and

doctrines to units. Since we do not have control over the units while the scenario is executed on the

server, it is important to “look ahead” and set up desired unit behaviors through missions and

doctrines, and have a clear set of ROEs for our units to reliably control their behavior while they are

out of direct control during turn execution.

When finished issuing orders, press “COMMIT TURN” on either the main map window, or in the

multiplayer window (or press spacebar).

After all the players have committed their orders, then the server will execute and progress the

scenario for the allotted Variable Turn Time (VTT) duration.

Page 20 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

While the server is executing, if the “Replay Snapshot Interval” setting has been set to a non-zero

value, players are provided with visual snapshots of what is occurring during turn execution. In this

example screenshot, the server has processed 42% of the turn, and the current scenario time is

01:01:26 Zulu (09:01:26 local).

“MP-Only” mode: Connecting non-Premium instances to MP on a secure network
One of the unique features of the Premium license tier is the ability to run in an isolated (ie. non-

Internet connected) machine. All other license tiers require a present Internet connection in order to

function, and will refuse to start without it.

So, what happens if we have a set of non-Premium CPE instances and want to make them clients in a

WEG-MP session in a secure (no Internet) network?

Beginning in CPE v2.1.4, we can use a special mode for this predicament called “MP-Only”. Using this

mode has two practical consequences:

1) The CPE instance that runs in this mode can start up even without an active Internet

connection, even if it has a non-Premium license. It can then join a new or existing WEGO-

MP session as usual.

2) At the same time, running in this mode allows the CPE instance to only function as an MP

client. It cannot function as a normal single-user workstation for analysis, scenario editing

etc. In order to function as a normal standalone instance, CPE needs to be shut down and

restarted in normal mode.

There are two ways to start a CPE instance in MP-Only mode:

1) In the CPE v2.1.4+ application launcher window, click on the button “Dedicated MP mode”:

Page 21 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

2) You can also trigger MP-Only mode from the command line, by launching CPE with the –

MPOnly switch. For example:

[CPE2 binaries folder]\Command.exe -MPOnly

The Umpire role

CMP’s umpire capability is an optional game mode which involves the addition of a special player:

the Umpire.

The Umpire has the ability to edit the scenario before and after server-side turn execution occurs.

The umpire can add units, remove units, change the damage on units, and perform any task

associated with scenario editing in Command. The Umpire can also change the VTT and OST values

at any time during the scenario playout, to speed up or slow down (or focus) the game tempo as

desired.

Furthermore, the Umpire can force all of the connected players to submit their turns at the press a

button.

Page 22 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

To enable the Umpire role, the “Require Umpire” option must be enabled prior to loading the

scenario. When this server setting is set to “True”, the server will not allow turn execution to

progress without a connected umpire.

Upon connecting to a server, if the Umpire role is enabled, an additional button called “Become

Umpire” appears on the scenario information panel.

Page 23 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Upon selecting “Become Umpire”, the Umpire player does not have the ability to edit the scenario

immediately (it is assumed that initial scenario configuration will occur before the MP game starts).

Once all of the players are connected and have issued their initial orders, then the umpire gets the

chance to edit the scenario; this is the pre-turn adjudication phase. This happens before any time

passes on the server, and the Umpire is able to change the orders issued by the players if he so

desires to. After the Umpire commits his turn, the scenario is then executed for the Variable Turn

Time selected.

After server execution has ended and the entire VTT execution time has elapsed, the Umpire is once

again able to edit the scenario; this is the post-turn adjudication phase. This gives the umpire a

second chance to make any alterations to the scenario, this time after the turn has executed. Once

the Umpire ends this phase, all the players get fresh copies of the scenario state and are now able to

issue new orders.

It is important to note that while the Umpire is adjudicating, all the players are waiting on server

execution to complete. Likewise, until all players commits their orders, the Umpire is unable to edit

the scenario state.

Let us walk through a representative Umpire-adjudicated turn sequence.

Page 24 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

This is what the Umpire sees in the MP window; the distinct Umpire-specific elements are visible on

the bottom right-hand side.

As mentioned, the Umpire can alter the OST and VTT duration values. This is performed through this

drop-down menu.

Page 25 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Several pre-set OST and VTT combinations are offered, covering different situations. These,

however, can also be manually changed, by editing the "[top-level writable

folder]\Config\MPTimeSettings.csv" file:

The D and E column correspond to the Variable Turn Time (VTT) in seconds, and the Order

Submitting Time (OST) in seconds respectively.

The computer that acts as the server does not need to be the same computer that connects to the

server as Umpire; the CSV file with the OST/VTT settings is always read from the Umpire’s computer.

Page 26 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

After all the players have submitted their turns, the Umpire is presented with the current scenario

state with all of the orders issued by the players brought in. The multiplayer panel displays

PreExecutionAdjudication. This indicates that the umpire is modifying the scenario state. When satisfied,

the Umpire must click “COMMIT TURN” (or press spacebar) to send the scenario state from the

Umpire’s computer to the server. After the Umpire has committed his changes, the turn will execute

on the server.

While the Umpire is editing the game scenario he can switch from side to side using the “Editor”

menu. IMPORTANT: Do not add or remove sides in the middle of the game as the Umpire.

Page 27 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

After the Umpire commits his changes (if any), the server executes the length of time defined by the

Variable Turn Time. This means the server will move the scenario state forward of time equal to the

Variable Turn Time value, and will use the CPE simulation engine to adjudicate any game events.

After the server has completed the turn, the post-turn scenario state is presented to the Umpire first

(the normal players are still waiting at this step); the Umpire can make any changes to the result of

the adjudication as he wishes.

Page 28 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

After the server has completed the turn execution, the Umpire is again presented with this

multiplayer window. Please note the status: PostExecutionAdjuication in the multiplayer turn status

panel. Upon pressing “COMMIT TURN”, the players are then presented with the result of what the

simulation engine has progressed plus the additions/changes that the Umpire makes during this

post-execution adjudication phase. The Umpire can also modify the current Order Submitting Time

(OST) and Variable Turn Time (VTT) at this point.

The play sequence cycle continues in this fashion until the scenario is concluded either by its own

built-in criteria or any arbitrary decision by the Umpire.

Page 29 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The Observer role
The Observer role is similar to the Umpire role with regards to its omniscience, but critically lacks its

omnipotence. Here are the main differences between these roles:

• There is no setting for specifying whether the Observer role will be required/available or

not; players can always opt to become Observers at the beginning of a session.

• Observers, like Umpires, can monitor the flow of scenario execution and switch between

sides to observe anything going on in the virtual battlefield. However, they CANNOT make

any alterations to the scenario state. They also cannot change the OST/VTT settings.

Page 30 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

REAL-TIME MULTIPLAYER (RTMP)

Introduction
Command RTMP is the realtime multiplayer capability of Command PE. As the name implies, this

allows for multiple players to play together in the same scenario, the same simulation, in real time.

The purpose of this manual is to guide users through setting up and running a Command RTMP

session, addressing common challenges, and maximizing the potential of its features. This document

provides comprehensive details on installation, configuration, and gameplay mechanics to ensure a

smooth experience in conducting multiplayer wargames.

Key Features and Benefits of RTMP

∘ Support for multiple players on the same or opposing sides.

∘ Umpires and observers for enhanced game control and oversight.

∘ Seamless "join in progress" functionality.

∘ Ability to accelerate time during gameplay.

∘ Revert the game to any previous state.

∘ Change scenarios mid-game without disrupting player connections.

∘ Compatibility with any scenario from Command PE, without the need for modifications.

∘ Event export for deeper analysis and review.

With Command RTMP, Command PE’s proven simulation engine is elevated to a multiplayer

environment, creating new opportunities for collaborative and competitive play in real-time

strategic scenarios.

Concepts
Command RTMP splits Command PE into two parts:

• CommandHost.exe, which runs the simulation, and permits clients to connect to the

simulation.

• Command.exe, which connects to CommandHost.exe and allows users to play the scenario

running on CommandHost.exe.

Command RTMP is still normal Command PE under the hood. The same Command PE simulation is

running, in essence the simulation core is ‘unaware’ that it is being played multiplayer.

Page 31 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Definitions

Side: When this document talks about a ‘side’ it means a side in a Command scenario. E.g. you might

have a scenario with two sides, USA and PRC.

Player: This means a computer running Command PE connected to a RTMP server, which usually will

have a human sitting in front of it.

Server: This means the computer running CommandHost.exe.

Client: This means the computer running Command.exe, which is connected to a computer running

CommandHost.exe.

Umpire: This is a ‘superuser’ player. Can modify the running scenario, and switch sides, view the

viewports of other connected players.

Observer: This is another type of ‘superuser’ player, but cannot modify the running scenario. All

attempts to modify the scenario state by an observer are ignored by the server.

Server and Client Roles
With one exception (Absolute Control mode, more on that later), the server will always have the

‘definitive’ version of the scenario. All simulation occurs on the server, the clients connected to the

server are akin to ‘dumb terminals’ where they display and input information but run zero

simulation.

Client Roles
There are 3 roles of connected client in Command RTMP: Player, Umpire, and Observer.

The best way to understand Command RTMP’s client roles is to start with Umpires. Umpires are a

connected client that have every ability including the ability to change sides, see all viewports, make

edits to the game state etc.

An observer is an umpire that is unable to change the game state. They can change sides, see all

viewports, but are unable to make any change to the game state.

A player is a connected client that is unable to change sides, and can only see the viewports of forces

on his side.

Network Architecture
The best networking setup would be an unmanaged switch connecting all of the computers, clients

and servers together on one network. However, we’ve had luck working over wifi many times.

Only the server’s IP should remain static, the clients’ IPs aren’t important as long as they don’t

overlap.

System Requirements
Normal Command PE system requirements are required for Command RTMP, however obviously

computers do need a network capability.

Page 32 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Hardware Requirements
A simple setup for Command RTMP is as follows:

• 1x Server Computer

• 4x Client Computers

• 1x 8-port Unmanaged Switch

• 5x CAT-5e cables of suitable length.

Server Recommendations
The minimum requirements for the server are the system requirements for CPE which can be found

on the Matrix Pro Sims portal website:

https://www.matrixprosims.com/game/command-professional-edition

For the server, a faster gaming CPU is ideal, along with high quality (fast) RAM. Potentially using

Windows Server might improve networking performance, but we haven’t tested this internally.

For optimal server performance, do not use the server computer for anything other than a server.

For optimal server performance, do not have the server computer perform double duty as server

and umpire computer.

Client Recommendations
As zero simulation happens on the client computers, normal Command PE system requirements will

work fine.

The system requirements for CPE can be found on the Matrix Pro Sims portal website:

https://www.matrixprosims.com/game/command-professional-edition

Network Architecture

Client-Server Model
The network architecture used by RTMP is a client-server model. The clients don’t need to

communicate among themselves, but every computer involved with an RTMP wargame must be able

to communicate with the server.

How to find the Server’s IP (Using Windows UI)
To find the IP address of a Windows computer using the Windows UI is as follows.

https://www.matrixprosims.com/game/command-professional-edition
https://www.matrixprosims.com/game/command-professional-edition

Page 33 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Open Network and Internet settings

Click on your ethernet adapter. This will be different if you are using WiFi vs a wired network.

Page 34 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Scroll down to find the IPv4 address.

How to find the Server’s IP (Using Windows Command Line)

Alternatively use ipconfig at the command line.

Port Configurations and Firewall Settings
Command RTMP uses one unified port across all servers and computers for RTMP functionality. All

computers, clients and server, need to use the same port. By default this port is 46790, but can be

changed. Command RTMP uses TCP/IP.

The server must be able to accept external connections on the selected port, and thus your firewall

settings and other security settings must permit CommandHost.exe to listen on its port for incoming

connections.

Page 35 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

An example netstat readout, showing CommandHost.exe listening on the default port

Installation and Setup
This manual assumes you have the latest version of CPE available installed correctly on your

computer.

The databases you are using must be distributed to all of the computers, servers and clients, and

placed in the normal DB directory.

Place your correct License.dat files on all computers, and the License_MP.dat on the server

computer. Contact our tech support for assistance with licensing.

Server Setup
The server for Command RTMP is called CommandHost.exe. It is located in the same directory as

Command.exe. (By default, C:\Program Files (x86)\Command Professional Edition 2\).

Page 36 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

A default C:\Program Files (x86)\Command Professional Edition 2\ directory tree

RTMP can be blocked by antivirus, by power saving modes, by firewalls, by misconfigured network

setups.

The Command RTMP server looks for configuration files in the same directory as Command.exe

does, by default C:\ProgramData\Command Professional Edition

2\Config\.

A default C:\ProgramData\Command Professional Edition 2\ directory tree.

CommandHost.exe looks in the Config folder (default, C:\ProgramData\Command Professional

Edition 2\Config\) for its settings, including event export settings.

Page 37 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Windows Defender Firewall

When this dialog appears, one must allow Command and CommandHost to communicate across the

network profile that corresponds to your computer network. If your network is correctly configured,

this will be a “private network” but often computers will have their network profile incorrectly

configured, so checking both boxes on this dialog box is recommended as this allows Command

through a private network as well as a public network. This is an essential step, one of the most

common errors seen in RTMP installations are firewalls blocking RTMP from communicating on

the network.

This firewall setting can be further configured in the “Windows Defender Firewall with Advanced

Security” configuration panel.

Page 38 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

If you accidentally press cancel on the Windows Firewall dialog, firewall settings can be set in the

Windows Defender Firewall settings.

Configuring Server Settings
Configure the event export settings normally like any sort of Command PE install on the server’s

side. Client event export settings are not used (as the simulation only runs on the server). These

settings are located in your Config folder on the server computer (the computer that will run

CommandHost.exe).

Client Setup

Verifying Command.exe Installation
An important stage before attempting a Command RTMP game is to verify that Command PE works

on all of the computers. Fire up Command normally on all the client computers, open a scenario

(ideally the exact scenario you plan to play) and make sure it works. This checks for the existence of

the correct DB on the computer, and checks to make sure Command works on the computer

correctly.

Configuring Client Settings (RealtimeMP.ini)
In the Command client side configuration folder (the Config folder on the Client computer) there is a

new ini file for preconfiguring Command RTMP called RealtimeMP.ini. This allows you to preset

player color, locked side, and player rights (Umpire/Observer/Player).

Page 39 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

An example RealtimeMP.ini locking player to “Blue” side for a server at 127.0.0.1.

[Player]

Name=Rory Anderson

R=0

G=255

B=255

[Rights]

LockedSide=Blue

Rights=Player

ShowPeerViewports=1

[Default]

IP=127.0.0.1

IP2=192.168.32.2

First we have the [Player] block:

Name, defines the name of the player. This will be displayed on their viewport, where there

mouse is located among other places in game.

R,G,B, these are integers between 0 and 255 that define the color of the player.

Second, we have the [Rights] block:

LockedSide, defines the name of the side in the Command scenario that the player will be

locked to. This doesn’t apply to Umpires. If the side doesn’t exist in the scenario, the player

will not be locked to a side.

Rights, this is the setting that tells RTMP if this client is a Player, Umpire or Observer. Defines

the role of the player.

ShowPeerViewports, this is 0 or 1 and defines if this client can see other user’s viewports.

Finally, we have the [Default] block:

IP, defines the IP of the server.

IP2, defines the local adapter to bind to. Usually Windows networking doesn’t need this to

be set, but we’ve found it useful to have as an option. This should be the IP of the adapter

you want to use for RTMP. This doesn’t need to be set usually.

RealtimeMP.ini examples
A few examples might be in order.

Page 40 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

A player with a dark blue color being locked to “Blue Navy” for a server at 192.168.1.45

[Player]

Name=Rory Anderson

R=0

G=0

B=255

[Rights]

LockedSide=Blue Navy

Rights=Player

ShowPeerViewports=1

[Default]

IP=192.168.1.45

An umpire with a white color. (Note, locked side doesn’t matter to Umpires)

[Player]

Name=White Cell

R=255

G=255

B=255

[Rights]

LockedSide=Blue Navy

Rights=Umpire

ShowPeerViewports=1

[Default]

IP=192.168.1.45

Page 41 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

A red airforce player, with red color, locked to side “Red Airforce”

[Player]

Name=43rd Bad Guy Aviation Wing

R=255

G=0

B=0

[Rights]

LockedSide=Red Airforce

Rights=Player

ShowPeerViewports=0

[Default]

IP=192.168.1.45

Network Configuration
CommandRTMP doesn’t require an internet connection, but certain tiers of licenses do require an

internet connection. For more information about licenses, please contact Matrix Pro tech support.

The fundamental expectation is that all the computers involved in an RTMP wargame are able to

communicate in a stable manner over the network with each other. RTMP can be blocked by

antivirus, by power saving modes, by firewalls, by misconfigured network setups, and fixing those

items are beyond the scope of this document.

Starting an RTMP Session
At this point you have the server and clients all set up. Your RealtimeMP.ini files are prepared ahead

of time for each client and you are ready to start playing Command RTMP across a network.

Page 42 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The basic lifecycle of a Command RTMP Session

∘ All computers must be connected together on a network.

∘ Server computer launches CommandHost.exe

∘ Server computer selects an initial scenario

∘ Client computers connect to server

∘ And now an RTMP game is running!

Launching the Server

In your Command directory, launch CommandHost.exe

Page 43 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

CommandHost.exe, the RTMP server, upon startup, before selecting a scenario.

To launch the server, run CommandHost.exe. It will do some pre-game checks, and when you see

“Simulation core engine loaded!” the server is ready to run.

Selecting and Loading a Scenario
Select a scenario with the “Select Scenario And Start” button. Ensure all client computers have the

required DBs ahead of time for the scenario.

When you see “Server started. Awaiting connections.” The server has started and is waiting, paused,

at the first moment of the scenario, for clients to connect.

Page 44 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

CommandHost.exe, after selecting a scenario. This server is ready to accept client connections!

Server UI Overviews
The server UI is intentionally very simple. All it requires is a single button press to select a scenario

and start.

There is one other button, Save Scenario, and that creates a save of the current state on the server.

We have a few settings on the top right, set “Performance Tracking” to false for more performance.

Set the port before starting the server. Autosave Interval is the number of seconds between

automatic autosaves, set to 0 for no periodic server autosaves. (This improves performance)

There is a log of server events on the right. As well as a performance tab, showing the network use

of the server.

But that is about it. A very simple server UI.

Page 45 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The server UI after a player, with umpire rights, joins.

The connections list, near the left of the UI, lists the currently connected players.

[UMP] indicates the player is an umpire.

[OBS] indicates the player is an observer.

Players without any indication, [UMP] or [OBS] are normal players, without special rights or abilities.

Page 46 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The player reconnected as a normal player, without umpire powers.

Connecting Clients

Joining a Game
Now, the server is running: lets connect some clients!

First, launch Command like normal.

There are two buttons that allow you to join a game on a server, one on the start screen, and one

under File->Realtime on the menu bar.

The button “Join Realtime” allows you to connect to a RTMP server.

Page 47 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

This menu, under File->Realtime also is equivilient to the button on the start screen above.

Player Configuration (without RealtimeMP.ini)
When joining a server with Command RTMP without a preset RealtimeMP.ini present on the client

computer you are presented with this dialog.

Page 48 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

When you don’t have a RealtimeMP.ini…

Gameplay Mechanics
So now you are playing RTMP! Congratulations! There is still more to learn.

Page 49 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The RTMP Ribbon
The first thing to cover is the so-called RTMP ribbon. This is the central UI for all things RTMP. It also

shows if the game is running or paused, or if some other user has Absolute Control mode (which

means you cannot edit the game state, and are waiting for the other user to give up AC mode)

The location of the RTMP ribbon, on top of the normal Command UI. Note the red arrows.

Page 50 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The RTMP ribbon expanded.

Starting from top to bottom, left to right.

Thread Delta Time, Traffic Waiting, Latency and Local Traffic Waiting, these are helpful measures for

how overloaded the system is. Higher numbers are worse. These have to do with the underlying

network transport layer, and the server’s ability to serve the clients.

Page 51 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Absolute Control (AC)

Absolute Control has its own chapter in this document, but here on the RTMP ribbon is how to

Request and Release Absolute Control.

Absolute Control pauses the game, and moves control of the game state to the computer that

requested it. Outside of Absolute Control (AC), the definitive scenario state is always on the server.

When AC is requested by a client, the definitive scenario state is removed from the server and sent

to the client. When a client has AC, they have the full scenario state.

Please look at the chapter on Absolute Control.

Autosaves / Rewind

Order Issuing and Execution
Command RTMP plays just like normal Command.

All players can control pause and time acceleration, please set up rules about time acceleration and

pausing ahead of time with your players.

There is no hierarchy or chain of command with players, the last player to issue an order to a unit is

the order the unit will follow.

Viewports
One feature of Command RTMP that isn’t present in the base game is the ability to see ‘viewports.’

These are the viewing area, and mouse location, of your fellow players.

Page 52 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

As you pan your map, or move your mouse, your other players on your side can see your

movements. And umpires can see all! But players are restricted to just seeing their side’s viewports.

This has applications in training, planning and team management.

The ‘viewports’ are the rectanges labeled “Rory Anderson” and “SteveWork”, also note that mouse

positions are also visible.

The colors for each player are pre-defined in RealtimeMP.ini. Please see the section on

RealtimeMP.ini for more details.

Page 53 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

This option can disable showing the peer viewports if desired. Also, this is a setting in RealtimeMP.ini

called ShowPeerViewports.

Switching Sides (or preventing switching sides) and God's Eye View
Players who do not have a valid LockedSide defined, can switch sides at will. To lock a player to a

side, you need to define a LockedSide in the RealtimeMP.ini or during player connect to a server.

The side name and the LockedSide need to have the exact same name. “USN “ and “USN” are

considered different sides by this mechanism, note the extra space.

Communication Tools (Lack Thereof)
Command RTMP does not have any built-in communication tools, please use alternative

communication tools like in-person vocal communication, cellphones, Discord/Slack/IRC etc.

Saving Games
There are three main mechanisms to save the game. By far the simplest is by use of the RTMP

ribbon.

The location for automatically saved games is on the server’s Scenarios directory, under the sub-

directory Realtime (by default, C:\ProgramData\Command Professional Edition

2\Scenarios\Realtime). Each RTMP server session is labeled with the date, and the hour and minute

of server startup.

Page 54 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

RTMP Ribbon Named Autosaves

Any player, umpire or observer at any time can trigger an autosave at any time. They can optionally

enter a tag to label the autosave, and hit the Save button. The server will then make an autosave,

with that optional tag, and place it in the server autosaves directory.

Also, note, the number of autosaves and the time since last autosave are also displayed here.

Page 55 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Server Save Dialog

This button here opens the Save Scenario interface.

Absolute Control Save Method
A final way, and a very rare way, to save the scenario is for a player to take Absolute Control and go

to File->Save. This might be useful if you want a copy on your local computer.

Loading Games
Command RTMP allows you to change scenario in the middle of a multiplayer game, without players

needing to reconnect.

First, read the section on Autosave and Rewind, as there is an easy built in way to revert the game

state to an earlier game state.

But, lets say you had a server full of 16 connected players, and want to change the scenario to some

other, completely different scenario, that uses a different DB. You can!

Take Absolute Control on one of the connected clients. Go to File->Load on the main Command

menu. Load your new scenario. Release Absolute Control. Boom! Everyone is now playing the new

scenario!

A couple of things: the new scenario’s database must be present on all the computers ahead of time,

including the server.

And, if you want players to stay locked to the right side, the side names must be the same. For

example, if you have 8 players locked to Blue, and 8 players locked to Red using the LockedSide

mechanic, then, the new scenario needs to have sides named “Blue” and “Red” to maintain the

locked side.

Page 56 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Handling Disconnections

The server will automatically pause the game when all clients disconnect. Players can join a game in

progress at any time.

Page 57 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

When connected to a RTMP game, there are two methods to disconnect. First is to go to File ->

Realtime -> Disconnect. And the other is simply to close Command.exe on the client.

Performance Optimization
To maximize performance on the server, do not run anything else of note on the server, including a

Command.exe client. Turn Performance Tracking off on the server ahead of time, and set Autosave

interval on the server to 0. Do not run any application that uses a lot of networking on the server

(eg, bittorrent client, large file transfers over the network, etc).

Autosave and Rewind Feature
Command RTMP has an autosave feature, and the ability to rewind multiplayer games to a previous

autosave.

Command RTMP automatically saves autosaves periodically, the autosave interval is set before

starting the server.

When Command RTMP autosaves, it saves TWO copies of the same scenario at a moment in time.

This is because the time in the simulation and the time in the real world are different.

“Realtime 2024 10 08 03 36 52.scen” and “Simtime 1950 07 02 09 15 00.scen” are a pair of

autosaves, that are exactly the same save. The Realtime autosave is labelled with the real time (the

time on the wall clock in reality) and the Simtime autosave is labelled with the in-sim time (the time

in Command.exe).

Page 58 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Accessing and Loading Autosaves

The location for automatically saved games is on the server’s Scenarios directory, under the sub-

directory Realtime (by default, C:\ProgramData\Command Professional Edition

2\Scenarios\Realtime). Each RTMP server session is labeled with the date, and the hour and minute

of server startup.

Using the Rewind Feature

In the RTMP Ribbon there is a History element. Press “Refresh” to see the latest autosaves. Select

one and press Load to load it. Remember to hit refresh to see the latest autosaves.

Page 59 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Absolute Control
Absolute Control (AC) mode is a special mode in RTMP. It pauses the server, the server saves the

scenario to disk, sends the scenario over to the player who requested Absolute Control and that

player’s computer opens the scenario as though it was normal singleplayer Command.

When that player releases Absolute Control, his computer saves the scenario that he has open to

disk and sends it to the server. The server opens this new scenario and the server is now running

that new scenario.

This allows for total control over the scenario, much like in single player. Add/remove sides, edit

anything in the scenario, add/remove lua scripts, events, etc.

Activating Absolute Control
To activate Absolute Control, press this Request button on the RTMP ribbon.

Server will then grant AC access. The player with AC will see this RED banner on their RTMP Ribbon.

Other players will see this BLUE banner.

When a player has AC, for the rest of the players the scenario is read only. They can view the

scenario, but cannot make changes to anything in the game state. (They can seem to make changes,

but when AC is released, all their changes will be overwritten).

Page 60 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

COMMAND-LINE INTERFACE
(Available in PE Premium)

Starting from version v1.15, a command-line version of CPE is available for use to help automate

your analysis workflow.

The CLI version differs in a number of ways compared to the normal graphics user interface (GUI)-

driven CPE application. Because it lacks the overhead of the various GUI elements, it runs faster and

more efficiently for a given scenario. Because of this, it is better suited for massive parallelized

analysis to fully utilize the CPU & RAM resources of modern computers. This ability is further

enhanced by its command-line nature: While it is certainly possible to run multiple instances of CPE

in parallel, spinning them up is a manual process. In contrast, multiple CLI instances can be

orchestrated by launching them from another application or simply by use of a batch file.

To use the CLI, you have to run the program CommandCLI.exe, located in the CPE installation folder

(same location as the main Command.exe program). The CLI version currently supports Monte-

Carlo mode analysis (not interactive).

Command-Line Arguments

To configure its behavior, the CLI version uses a number of command-line arguments.

There are two required command line arguments: -mode and -scenfile.

-scenfile [e.g. “path”] : Provides CommandCLI.exe with the scenario that you desire to run.

Using the quotes is technically not mandatory, but necessary when the scenario file’s total

path includes space breaks (e.g. “C:\Users\User1\My Scenarios\Scenario1.scen”).

-mode [MC or I] : Sets CommandCLI.exe into Monte Carlo (MC) or interactive mode.

If set to MC mode, the simulation will load the desired scenario and immediately start

running it as fast as possible without waiting for any interaction.

If set to interactive mode, the simulation will load the desired scenario but in a paused state,

open a TCP socket port, and wait for instructions by the user through the TCP socket, using

the Lua API. Several key Lua methods for manipulating scenario execution are:

o VP_RunSimulation: Un-pause the scenario and resume running it as fast as possible

o VP_PauseSimulation: Pause the currently running scenario

o VP_RunToTimeAndHalt . This allows you to specify that the scenario will pause

when it reaches the provided date and/or time (in DD:MM:YYYY / HH:MM:SS

format). Usage examples:

VP_RunToTimeAndHalt({Date='07:02:2023'})

VP_RunToTimeAndHalt({Time='22:46:23'})

VP_RunToTimeAndHalt({Date='07:02:2023', Time='22:46:23'})

o VP_RunForTimeAndHalt . Similar to the above, this allows you to specify that the

scenario will run for X-time (in HH:MM:SS format) and then pause. You can specify a

Page 61 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

timespan larger than a day by using a suitable hours figure (e.g. 72 hrs. for a 3-day

span). Usage example:

VP_RunForTimeAndHalt({Time='28:12:23'})

There are also several optional command line arguments: -autoexit, -outputfolder, -iterations, -

savemessagelog and -recinterval.

-autoexit [no argument necessary]: By default, when CommandCLI.exe finishes its analysis

run or suffers an error of any kind, it will wait for the user to press any key to exit. Using the

-autoexit switch will instead cause the program to automatically exit.

-outputfolder [e.g. “path”] : By default, CommandCLI.exe outputs into the Analysis_MC

directory in your Command directory. You can override that behavior with the -outputfolder

command line argument.

-iterations [e.g. 123] : (Applies to MC mode only). By default, CommandCLI.exe will run the

provided scenario once. Changing the -iterations command line argument allows for more

than one simulation to occur in sequence.

-savemessagelog [no argument necessary]: If added, each iteration run will also output the

consolidated message log, and write it on the per-iteration output path.

-recinterval [e.g. 123] : By default, CommandCLI.exe will not use the recorder feature to

allow the run to be replayed. Changing the -recinterval argument allows for the interval

between recorder snapshots to be set. The number provided is the number of seconds

between recorder snapshots.

This is an example of a complete call to run an automated analysis:

CommandCLI.exe -mode mc -scenfile "D:\Command\Scenarios\Desert Storm 1991 - Strategic air

campaign - Instant Thunder.scen" -iterations 3 -outputfolder “D:\Analysis1” –recinterval 15

CommandCLI can be run via PowerShell, or in the traditional Windows command interpreter

(cmd.exe):

Unlike setting up Monte Carlo in Command.exe, configuration of event export for CommandCLI.exe

uses the EventExport.ini file. Please refer to the documentation for Analysis and Data Export for

information on how to set up EventExport.ini to capture the information essential to your analysis.

Arguably one of the most useful features of the CLI version is the easy setup for parallel execution.

This is an example of how a batch file can be used to spawn three analysis jobs in parallel:

start “Job1” CommandCLI.exe -mode mc -scenfile "D:\Command\Scenarios\Desert Storm 1991 -

Strategic air campaign - Instant Thunder.scen" -iterations 3 -outputfolder “D:\Results_Job1” –

recinterval 15

Page 62 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

start “Job2” CommandCLI.exe -mode mc -scenfile "D:\Command\Scenarios\Korea 2017.scen" -

iterations 3 -outputfolder “D:\Results_Job2” –recinterval 5

start “Job3” CommandCLI.exe -mode mc -scenfile "D:\Command\Scenarios\MarshmallowMan.scen"

-iterations 3 -outputfolder “D:\Results_Job3” –recinterval 60

Page 63 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

GENERAL SYSTEM & INFRASTRUCTURE

Additional configuration settings

CPE uses additional configuration settings, which are stored in supplemental configuration files. All

configuration files are stored on the [top-level writable folder]\Config folder.

Command.ini contains all settings that are applicable to both the commercial and

professional/academic editions of CMO.

CPE.ini handles general simulation settings as well as Lua-specific settings.

EventExport.ini stores the settings for event export (see section “Interactive analysis & event export”).

ExternalURLs.ini stores the addresses of external on-demand information providers (tutorial videos,

mapping tiles, DB-viewer images etc.). Having these addresses on a separate file outside of the

program code makes it far simpler to adjust these links if any of the external sources goes extinct or

new alternative sources become available.

SimConnect.ini is responsible for the setting of various remote-entity / distributed-simulation

connectors (initially DIS, but also expandable to other types).

Overrides.ini governs settings for the configurable Mechanics Overrides available in CPE.

Page 64 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Running CPE in high-DPI (4K / UHD) monitors

Command PE’s user interface is optimized for execution in a 720p (1280x720) or 1080p (1920x1080)

screen format, in “standard DPI” desktop settings. As monitors with higher resolution proliferate,

CPE’s UI code has been continuously adjusted to also function in higher resolution. However,

depending on the graphics card used by your system, and particularly in high-DPI desktop settings

(https://en.wikipedia.org/wiki/Dots_per_inch#How_Microsoft_Windows_handles_DPI_scaling),

some issues may manifest (out-of-memory errors, UI elements misadjusted etc.).

To prevent such issues, a simple manual adjustment is necessary. (The steps described below are for

Windows 10, on earlier versions of Windows the procedure is effectively the same but the steps may

be slightly different in execution)

First, using Windows Explorer, navigate to the Command PE installation folder:

Right-click on the Command executable (Command.exe) and select “Properties”:

In the “Compatibility” tab, select “Change high DPI settings”:

https://en.wikipedia.org/wiki/Dots_per_inch#How_Microsoft_Windows_handles_DPI_scaling

Page 65 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Check the “Override high DPI scaling behavior” checkbox and from the dropdown list select

“System”:

After this adjustment, Command-PE should run on your high-DPI desktop without any problems.

Please contact the tech support personnel with any issues you may encounter in this aspect.

Page 66 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

PRO-EXCLUSIVE SIMULATION & UI FEATURES

Communications jamming & disruption
(Available in PE & AE)

The commercial release v1.12 of CMANO introduced rich capabilities for modelling communications

disruption, described in summary here: http://www.warfaresims.com/?p=4454

One addition reserved exclusively for Command-PE is the inclusion of integrated communications

jamming, without need for any scripting. The model used for the various factors affecting comms-

jamming is simpler than the equivalent one used for radar jamming, however it is structured to be

extendable/replaceable for interested customers via mechanics overrides (see section “Mechanics

Overrides”).

The check for comms jamming occurs every 15 seconds of simulated time. Once a unit has all its

available communications links effectively jammed, it is removed from its parent side’s

communications grid and suffers the same “isolation” effects as those in the commercial version of

CMO. The unit will remain off-grid as long as its communications remain jammed, and may rejoin its

parent grid only if any of its comm devices successfully resists jamming (or the suppression ceases).

There are special cases where a unit, while remaining effectively jammed, may nevertheless be able

to rejoin its parent comms grid, such as when an aircraft returns to a base or carrier which itself is on-

grid.

Some ready-to-use examples of a communications-jamming platform in the Command database

(DB3000) are:

• Aircraft #2316 - EA-6B Prowler ICAP II Blk 89 -- United States (Marine Corps), 1999 – using the

USQ-113(V)2 comms intercept & jamming suite

• Aircraft #1091 - EA-18G Growler -- United States (Navy), 2011 – using the improved USQ-

113(V)3 system

Fixed Side Colors
By default, Command PE (like its commercial counterpart) uses the standard NTDS/APP-6 color codes

for the various unit & contact symbols: blue for friendly, red for hostile, yellow for unknown etc. These

colors are based on postures per side. So for example when viewing Side-A’s operational picture, Side-

A’s units are shown in blue; when viewing Side-B’s equivalent picture, Side-B’s units are shown in blue,

etc.

However, in traditional board-based wargames & exercises, by practical necessity, the assigned side

colors are fixed: Side-A is constantly blue, for example, and Side-B is constantly red, regardless of

which side’s viewpoint the player occupies. This convention is frequently carried over to electronic

versions of these exercises and may be required in a gaming session that involves CPE.

To facilitate this requirement, Command PE allows assigning an arbitrary fixed color per side. This

ability is available as a per-scenario optional feature:

http://www.warfaresims.com/?p=4454

Page 67 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Before being able to enable this feature, it is first necessary to assign a fixed color to each of the

sides present in a scenario. This is possible through the “Sides” window interface:

Once each side has been assigned a fixed color, the feature can be enabled for the scenario.

This is an example of an own side having been assigned a pink hue as a fixed color:

Page 68 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Because of the usage of fixed colors, it can be more difficult to keep track of which side’s viewpoint

the player is observing. For this reason, while this feature is active, the current side’s name is

permanently displayed under the status caption bars as a reminder (in the above screenshot, “Royal

Navy”).

The Amphibious Planner, Operation Planner & Serial Editor

The amphibious and operation planner, together with the serial editor, form a set of common-

oriented tools that allow you to orchestrate complex, multi-layered operations (including, but not

limited to comprehensive amphibious landings) and execute the different phases of an operation at

different time points or based on customized conditions.

For a detailed walkthrough on using these powerful tools to their full effect, see Appendix 3 at the

end of this manual.

Multiple Coordinate System Options

Command PE can display global locations using a number of different coordinate systems. The user

can select from the following coordinate systems in the “Game Options” window:

• Degrees

• Signed Degree

• Military Grid Reference System (MGRS)

• Universal Trans Mercator (UTM)

• Earth-Centered, Earth-Fixed (ECEF)

Export Losses and Expenditures

Command PE can export a formatted list of all losses and expenditures for the current scenario to a

formatted text file. To export the current state of scenario losses and expenditures, open the

‘Losses & Expenditures’ window from the Game menu and click on the ‘Export’ button.

The ‘CSV’ option will create a comma delimited (by default) text file with the following fields. The

separator character can be changed to a character other than a comma, if desired. The CSV file will

contain the following fields:

<Entry Type>,<ID>,<Quantity>,<Name>

Entry type will be either ‘Loss’, ‘Expenditure’, or ‘Weapon Loss.’ A ‘Loss’ indicates a unit type, while

an ‘Expenditure’ or ‘Weapon Loss’ identifies a weapon type.

“ID” indicates the type and database ID of a unit loss (i.e. Aircraft_1234) or the database ID of a

weapon loss or expenditure.

“Quantity” indicates the number of losses or expenditures.

Page 69 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

“Name” is the unit or weapon name.

The ‘XML’ option will create a formatted XML file with identifying fields for each type of unit lost,

weapon expended, and weapon lost in the scenario. Each entry will include the type (‘Unit’ or

‘Weapon’) plus an ID, Quantity, and Name field (formatted as above) for each type of loss or

expenditure.

Custom Unit Icons

Beginning from v2.3, the map symbol Icon of individual units can now be modified during runtime,

on a persistent level, and through multiple scenario runs.

Custom icons supports:

• Individual units defined by their GUID which is a unique instance of a unit. (ex : one icon for

F-15 #1, a different icon for F-15 #2 etc.)

• Individual database ID (DBID) which represent a main entry in the database. (ex : one icon

for F-15, another icon for F-16 etc.)

• A platform category (ex : aircraft)

Given the situation, you may want to either change a specific unit’s icon, even temporarily but have

simultaneously an icon override for its category. For example, you could have all F-15’s icons

changed, but have one specific F-15 unit with its own icon.

This is supported according to an order of priority when performing icon override. Command will

override the icons given a logical order. The most global override (platform category) will always be

overridden by the most specific one, if the latter exists.

A summary of the precedence rules:

• If a platform category icon overrides exists it will replace the native icon.

• If a DBID (database specific) override exists it will replace all the above.

• If a Guid (unit specific) override exists it will replace all the above.

Category and DBID icon override

Getting started

The custom icon folder and association files template are automatically created, if you have just

acquired this new version, you will need to launch Command beforehand for the files and folder to

be generated.

Platform categories are currently defined as:

• ship

• aircraft

Page 70 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

• vehicle

• facility

• submarine

• weapon

• satellite

• personnel

If you are uncertain about a units platform check the in-game DBViewer or the database entry itself.

For example, some “units”, such as whales are classified as submarines.

Creating an entry

To create the override, open either Associations_CWDB.csv or Associations_DB3000.csv in

Symbols\Custom, depending on which database you have chosen to work upon.

The syntax to create an override is as follows :

#TYPE;DBID;FILENAME;SIZE(optional);ORIENTATION(optional)

Note that the last 2 arguments are optional, this means that both can be ignored when adding an

entry.

• Type is the database categories as listed in “platform categories”.

• DBID is the actual database entry ID which is unique within a unit category. Putting * in

place of the DBID designates the entire category to be overridden by this icon.

• Filename is the icon’s filename, with its extension, which is located in the Symbols\Custom.

You should only use squared images, with a white base color (to support dynamic coloring),

and the picture pixel size should be as small as possible and ideally multiple of 2, or 20px.

Large and very large icons (>32px) should be the exception and used only is the custom size

argument is large as well.

• Size is the icon’s size in pixel as drawn in command, the default size is 20px. This argument is

optional.

• Rot determines whether or not the icon should rotate according to the unit’s bearing.

Putting a different value or nothing defines the icon with the default orientation (non-

rotatable) This argument is optional.

Each parsible line must start with a # character, all other lines are ignored, making it possible to add

comments within the file.

To create an override that applies to all ships you can write :

#ship;*;Ships.png

• The * means “all DBID from the category”.

• “Ships.png” being the image you have added in the custom icon folder.

To create an icon override specific to a DBID, the second argument must have the corresponding

DBID of a platform. The DBID can be found in the DbViewer within Command, or by browsing the

database file.

Page 71 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Example 1 :

#aircraft;2846;Drone.png;40;rot

Replaces aircraft DBID 2846 default icon to Drone.png, but also increases its size (from 20px to 40px)

We also specify that the icon will be rotated according to its orientation (rot).

Example 2 :

#submarine;92;Whale.png

Replaces submarine DBID 92 (a whale) from the default icon to the one specified. None of the

optional argument were filled, the icon will be 20px and won't rotate.

Instructions are available within Command’s UI, this also allows hot reload during runtime, thanks to

the “reload” button :

Scenario-level unit icon override

This low-level override associates an unit’s Guid to a custom icon and this information is stored

within the save/scenario file. It is not necessary to manually edit any file, since the modification are

performed within Command’s UI.

Note that the icon files still need to be present in the right location. If you pass along a scenario to

another user and want him to use the custom icon, you must provide him with the custom icons

Page 72 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

located in \Symbols\Custom . If you are uncertain of the location of this folder, run Command, open

any scenario, and navigate to the top menu bar Editor>Customize Icons and then click on the “open

folder” button.

Customizing the icons

Select one or more units and go to [Top bar menu] Editor>Customize Icons.

This will bring you to an UI listing all icons located in the Custom folder. Note that editing this folder

is possible even during runtime, thanks to the “reload” button, which refreshes the available icons.

Pick an icon in the displayed list and click on the “confirm” button. The unit’s icon will be changed.

A unit with a customized Icon will have the name of the custom icon in brackets next to its name.

The “Restore default icon” button will remove the custom icon override for all selected units, even

for a unit from a saved scenario.

Page 73 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Miscellaneous

Pitch Kinematics
Starting from version v1.11.06, air-launched guided weapons follow a much smoother and more

realistic trajectory after launch, using true pitch attitude; thus, their horizontal and vertical speeds are

adjusted continuously as their orientation towards their target and pitch change. This change means

that the projected position-in-time of a weapon, as well as the fuel/energy quantity necessary to

achieve the nominal range are calculated differently from the legacy model.

In the commercial version this change is enforced and cannot be disabled. In CPE, to avoid disrupting

existing analysis workflows that assume/rely on the legacy model, the improved model is optional

(enabled by default) and enabled/disabled through the CPE.ini file (see Appendix 1):

UsePitchForWeapons = 1 enabled

UsePitchForWeapons = 0 disabled

The new model also changes the way that the weapon fuel/energy quantity is calculated (see inset

“Changes to weapon fuel for pitch-enabled weapons” on the DB editor manual).

DLZ-check override

DLZ calculations (see CMO manual, section “DLZ and why it matters”) are fundamental to weapon

launch decisions but can sometimes prevent engagements in which we want to temporarily overlook

the kinematic factor.

For this reason, a unit can be instructed to ignore its DLZ calculations prior to firing a weapon (Unit

context menu → Attack Orders → Ignore DLZ). This is useful for visualizing a weapon’s trajectory

regardless of its DLZ envelope (and validating the DLZ calculations themselves).

Page 74 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

ANALYSIS & DATA EXPORT

Interactive analysis & event export
(Available in PE & AE)

One of the common uses of Command-PE is for analysis of a scenario (or multiple variants of a given

scenario with subtle changes) to generate outputs useful for tactical/operational analysis.

Command-PE offers two analysis modes, interactive and non-interactive (aka Monte Carlo mode).

Interactive analysis is very similar to a normal gaming session as on the commercial version of CMO,

thus affording the user the flexibility of altering any of the scenario parameters mid-execution at will.

The only addition is that, in the background, events of interest are being written to disk (or sent over

the network) as configured by the user.

The following destination types for event export are currently supported:

• CSV format: Writes events to comma-delimited files, on the path [top-level writable

folder]\Analysis_Int\xxx.csv (multiple files, one for each event type, and even more if the

"SplitFilesBySide" option is enabled)

The generated CSV files can be either left in the “raw” text form, or opened in other

applications like MS-Excel for further processing & analysis:

• XML format: Writes events to XML-formatted files, on the path [top-level writable

folder]\Analysis_Int\EventExport.xml (single file)

Page 75 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

• MS-Access database: Writes to a single MS-Access database file, on the path [top-level

writable folder]\Analysis_Int\EventExport.mdb (single file)

• Tacview 1.x/2.x format: Writes events to a single ACMI format file used by Tacview, on the

path: [top-level writable folder]\Analysis_Int\Tacview1x.acmi and Tacview2x.acmi

respectively (see also section “Tacview visualization”).

• Tacview RT (real-time): Streams events either locally or over the network to a running

Tacview instance configured for real-time streaming (see also section “Tacview visualization”).

• SIMDIS file format: Writes events to a single .asi format file used by SIMDIS, on the path:

[top-level writable folder]\Analysis_Int\SIMDIS.asi (see also section “SIMDIS

visualization”).

Additional destination types (other databases, web services etc.) can be added on request.

The following event types are currently exportable in both interactive and Monte-Carlo mode:

• Sensor detections (both successes and failures)

• Weapons fired

• Weapon engagements

• Unit destroyed

• Unit damaged

• Unit locations and movements

• Fuel consumption

• Fuel transfers (refueling etc.)

• AI contact-handling pipeline & engagement lifecycle (initial contact creation, contact

classification/ID, targeting, weapon assignment, etc.)

• Air operations (aircraft taking off and landing)

Page 76 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

• Docking operations (water craft docking / undocking from a mothership)

• Cargo transfer

Any additional event type desired can be added on request.

The selection of the event-export destination, as well as the various parameters, is controlled by the

file [top-level writable folder]\Config\EventExport.ini:

The structure of the settings file allows mix-and-matching different output destinations for different

event types. For example, a user may configure unit position updates to be streamed to Tacview for

real-time display, but fuel consumption events to be stored to a database for later processing.

Once any of the settings in this file is changed, CPE must be restarted for these changes to take effect.

To run a scenario in interactive analysis mode:

1) Specify one or more export destinations in the Event Export.ini file (e.g. “ActiveExporter =

CSV, Tacview2x”). For each destination, configure the desired event types to be exported by

setting them to “True”.

2) Startup Command, and load and run a scenario as usual. You can visually confirm that the

events are exported, by enabling "Show Diagnostics" in the "Game Options" window. The

scenario status text (White-text on black-background label on top of the map) will then

display, among other scenario information, the line "Event Queue Length: XXX" showing the

current queue(s) for the events being exported to disk/network/etc.

Page 77 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

 Customizing output destination & export rate

By default, the generated outputs of an interactive run (when directed to text files of various

formats as opposed to, for example, streamed to database servers) are written on the folder [top-

level writable folder]\Analysis_Int\ and are overwritten or appended between successive runs.

However, it is possible both to change the top-level target folder and also to separate the generated

results for each run.

To change the top-level output folder, you can use the OutputRoot property on the file [top-level

writable folder]\Config\EventExport.ini. For example:

[General]

; Valid choices: CSV , XML , MSAccess , Tacview1x , Tacview2x,

TacviewRT, SQLServer, SQLite, SIMDIS

ActiveExporter = CSV, Tacview2x, SQLite, TacviewRT

OutputRoot = "C:\InteractiveResults"

[CSV Settings]

UseZeroHour = True

SplitFilesBySide = False

[.....]

To separate the outputs of each interactive analysis run, you can use the PartitionOutputs property

on the file [top-level writable folder]\Config\EventExport.ini. For example:

[General]

; Valid choices: CSV , XML , MSAccess , Tacview1x , Tacview2x,

TacviewRT, SQLServer, SQLite, SIMDIS

ActiveExporter = CSV, Tacview2x, SQLite, TacviewRT

OutputRoot = "C:\InteractiveResults"

PartitionOutputs = True

[CSV Settings]

UseZeroHour = True

SplitFilesBySide = False

[.....]

If the value is set to True, each interactive run (same or different scenario) outputs its results on a

subfolder within [OutputRoot] whose name is a combination of the scenario name and date & time

of the start of the execution. If the value is not present, or is set to False, all outputs are stored on

[OutputRoot] as default.

Page 78 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

It is also possible to customize the output rate of the “Unit Positions” export table. Instead of

exporting unit positions on every second (the default), a different rate may be set, using the

ExportUnitPositions value under the [Output Rate] configuration section in the file [top-level

writable folder]\Config\EventExport.ini. For example:

[General]

; Valid choices: CSV , XML , MSAccess , Tacview1x , Tacview2x,

TacviewRT, SQLServer, SQLite, SIMDIS

ActiveExporter = CSV, Tacview2x, SQLite, TacviewRT

OutputRoot = "C:\InteractiveResults"

[Output Rate]

ExportUnitPositions = 5SECONDS

[CSV Settings]

UseZeroHour = True

SplitFilesBySide = False

ExportSensorDetectionSuccess = True

[.....]

The valid inputs are:

• "CONTINUOUS": Outputs on every sim pulse

• "1SECOND" : Outputs on every second

• "2SECONDS" / "2SECOND" : Outputs every 2 sim seconds

• "5SECONDS" / "5SECOND" : Outputs every 5 sim seconds

• "15SECONDS" / "15SECOND" : Outputs every 15 sim seconds

• "30SECONDS" / "30SECOND" : Outputs every 30 sim seconds

• "1MINUTE" : Outputs every sim minute

• "5MINUTES" / "5MINUTE" : Outputs every 5 sim minutes

• "15MINUTES" / "15MINUTE" : Outputs every 15 sim minutes

• "30MINUTES" / "30MINUTE" : Outputs every 30 sim minutes

• "1HOUR" : Outputs every sim hour

• "6HOURS" / "6HOUR" : Outputs every 6 sim hours

• "12HOURS" / "12HOUR" : Outputs every 12 sim hours

• "24HOURS" / "24HOUR" : Outputs every 24 sim hours

• "MATCHSIMSPEED": The output rate automatically matches the selected time acceleration
setting if in interactive mode. For example if the user has set time accel to 1-5 mins, the output
rate will be once every 5 sim minutes.

Page 79 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Speed bands: Dynamic export rate based on unit speed

Sometimes it is desirable, instead of a static predefined export interval, to vary the export frequency

dynamically per-unit, based on a unit’s speed. For example, we may want very rapid updates on

ballistic missiles and other exo-atmospheric objects, less frequent updates on aircraft, even less so

for ships or ground vehicles, and very sporadic “heartbeat” updated for static facilities. “Speed

bands” is a configurable speed interval where we can do just that, by applying a specific position

output frequency. This can save both CPU processing power and disk space from redundant data.

To facilitate this, the EventExport.ini file has been expanded to include additional per-exporter

settings. They are grouped under the headings [General], [CSV Settings], [XML Settings] etc. This

allows customizing the export rates not only per speed band but also individually for each exporter.

Here is an example of part of the revised config file with the new settings:

[CSV Settings]

UseZeroHour = False

SplitFilesBySide = True

ExportSensorDetectionSuccess = True

ExportSensorDetectionFailure = True

ExportWeaponFired = False

ExportWeaponEndgame = False

ExportUnitPositions = True

ExportEngagementCycle = True

ExportUnitDestroyed = True

ExportFuelConsumed = True

ExportFuelTransfer = True

ExportAirOps = True

ExportDockingOps = True

ConsolidateCSV = False

UseCustomUnitExportFrequency = true

SpeedBandFrequency0To20 = 60000

SpeedBandFrequency20To40 = 30000

SpeedBandFrequency40To80 = 15000

SpeedBandFrequency80To160 = 7500

SpeedBandFrequency160To320 = 3250

SpeedBandFrequency320To640 = 1625

SpeedBandFrequency640To1280 = 800

SpeedBandFrequency1280To2560 = 400

SpeedBandFrequencyOver2560 = 200

SpeedBandFrequencyDynamic = 0

Page 80 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

(If these settings are not already present on the config files, default values are created for them on

first-time use)

Speed band frequency

Here we can define, for each speed bands in knots, the desired

export frequency (using simulation time) in milliseconds.

Examples:

SpeedBandFrequency20To40 = 30000

What this actually means:

1 position export entry will be written every 30 simulation

seconds, for units having a speed between 20 and 40 knots.

More detail: custom frequency for specific units

If an even finer control over the position output frequency of a unit (or a group of units) is desired,

we can edit a separate configuration file called ExportUnitLocationFrequencySettings.csv file. This

file must remain in the [WritableRoot]\config folder and follow the template’s format.

Unit's GUID Override

186a6e85-9be3-4a6b-96bb-32ea33db3c2d 500

525r7e21-3jh1-4a6b-55uu-35e234gb3r2d 300

An example of such a CSV file (the first row is ignored):

In this example, this first unit will output its position every 0.5 second (500ms)

The second unit will export it every 0.3 seconds (300ms)

The exporter will not use the custom frequency unless UseCustomUnitExportFrequency is set to

true.

If UseCustomUnitExportFrequency is active but no value is found for the unit, the fallback value will

be either the dynamic frequency or the defined speed band, as normal.

Dynamic frequency based on unit’s speed

SpeedBandFrequency0To20 = 60000

SpeedBandFrequency20To40 = 30000

SpeedBandFrequency40To80 = 15000

SpeedBandFrequency80To160 = 7500

SpeedBandFrequency160To320 = 3250

SpeedBandFrequency320To640 = 1625

SpeedBandFrequency640To1280 = 800

SpeedBandFrequency1280To2560 = 400

SpeedBandFrequencyOver2560 = 200

Unit's GUID,Override

my guid 1,500

my guid 2,300

Page 81 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

SpeedBandFrequencyDynamic will be evaluated if it has any value different to 0. This behavior has

priority over the rest except for Custom frequency for specific units.

Dynamic frequency works differently to the rest as it changes according to the unit's current speed :

Therefore, as a unit goes faster, the frequency will increase, the dynamic frequency controls that

rate proportionally.

This is a very powerful tool, especially for large scenarios, it is possible to reduce the amount of

written data by orders of magnitude while keeping a high level of accuracy.

A good methodology is to have a target reference accuracy, and then calculate backward the

SpeedBandFrequencyDynamic.

For example, assume say our goal is to get 1 position update every second for a unit going at

10knots. (Therefore 2 updates a second for units going at 20 knots etc…).

The SpeedBandFrequencyDynamic = 100 (0.1sec)

Since 10 000 (10sec) = 100 /10 *1000

Finding the sweet spot for dynamic frequency while having frequency overrides for very specific

units allows to create very lightweight analysis in a large scenario while keeping extremely accurate

focused data.

Changing settings through scripting

Event export settings can be changed while a scenario is executing using the Lua function

Exporter_SetSettings. This allows you to enable or disable exporters and events without requiring a

complete restart of Command. For example:

Exporter_SetSetting("General","ActiveExporter","Tacview2x,CSV")

The script call above would enable both the Tacview2x exporter and the CSV exporters, just as if you

had edited the EventExport.ini file and restarted Command. Note that you must explicitly list all

exporters you wish to have enabled, as anything not listed as an ‘active exporter’ will be disabled by

default.

You can also use Exporter_SetSettings to change the individual exports for each output type. For

example, the following would enable the unit positions event for the CSV exporter, just as if you’d

change the ‘CSV Settings’ section of EventExport.ini and restarted Command:

Exporter_SetSetting("CSV Settings","ExportUnitPositions","true")

See the Command Professional Edition Lua documentation for further details on the

Exporter_SetSettings function.

Some more usage examples:

Exporter_SetSetting("General","ActiveExporter","XML,Tacview1x") - Set the active exporter to

XML and Tacview 1x

Resulting frequency = SpeedBandFrequencyDynamic / Unit current speed * 1000

Page 82 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Exporter_SetSetting("Tacview Settings","SpeedBandFrequency0To20","2000") - Set the Tacview

exporter frequency to 2 for the speed band between 0 and 20 knots, meaning that 1 position export

entry will be generated every 2 simulation seconds (2000ms), for units having a speed between 0 and

20 knots.

Scripting walkthrough example

Let us consider an example of using this feature through scripting. To get started, you will perform

an export in Tacview mode of a scenario of your choice (preferably a scenario with a good variety of

unit’s types). Tacview is ideal to visualize the effects of the changes in position export frequencies.

And we will add another exporter during the course of the scenario.

Let us begin with these default values:

Set this, for each exporter:

And make sure no event exporter is activated:

Now open the desired scenario in CPE. Subsequently, open the Lua script console and run :

We are enabling the Tacview exporter.

UseCustomUnitExportFrequency = true

SpeedBandFrequency0To20 = 0

SpeedBandFrequency20To40 = 0

SpeedBandFrequency40To80 = 0

SpeedBandFrequency80To160 = 0

SpeedBandFrequency160To320 = 0

SpeedBandFrequency320To640 = 0

SpeedBandFrequency640To1280 = 0

SpeedBandFrequency1280To2560 = 0

SpeedBandFrequencyOver2560 = 0

SpeedBandFrequencyDynamic = 0

ExportUnitPositions = False

ActiveExporter = None

Exporter_SetSetting("General","ActiveExporter","Tacview2x")

Page 83 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

We are setting SpeedBandFrequencyDynamic to 200 for the Tacview exporter. Meaning that we are

going to export the unit position every 200 seconds/knots.

Argh! But we forgot to enable the csv exporter, so we need to restart the scenario…..?

Actually, we do not.

The export enables hot loading of exporters without crushing existing ones:

Make sure, to include all exporters you want to be active, not just the new ones you are adding.

If we had not included Tacview2x in the above Lua command, the Tacview2x exporter would be

deactivated and flushed.

Finally, we want to make sure that position export is enabled for CSV export:

Exporter_SetSetting("Tacview Settings","SpeedBandFrequencyDynamic","200")

Settings","SpeedBandFrequencyDynamic","200")

Exporter_SetSetting("General","ActiveExporter","Tacview2x,CSV")

Settings","SpeedBandFrequencyDynamic","200")

Exporter_SetSetting("CSV Settings","ExportUnitPositions","true")

Settings","SpeedBandFrequencyDynamic","200")

Page 84 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Interactive analysis settings window

A common drawback of directly editing the EventExport.ini file is that the application must be

restarted in order for these changes to take effect. An alternative way to configure the most

common analysis & export settings is to use the “Interactive Analysis Settings” window (Editor →

Interactive Analysis Settings):

This makes it possible to change various settings for event export without needing to restart the

application. It also makes it possible to start or stop an export sequence at will.

Any changes to any of the listed per-format export settings will take effect immediately if an export

is active at the time (ie. there is no need to stop and restart the export process). However, in order

to add or remove an export format (e.g. start exporting to XML in addition to CSV), or in order to

change the destination file, the currently running export run must be stopped and then resumed.

Note that using the EventExport.ini config file is also still supported, as the raw config file exposes

some properties which are not currently displayed on the GUI window (for example, customizing the

export rate).

Page 85 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Save scenario as XML by default
(Available in PE & AE)

CPE can be configured to save scenarios in their “raw” XML format instead of compressing them into

a binary form inside an XML container. To enable this, the Boolean config value SaveAsXML must be

set in the file [top-level writable folder]\Config\CPE.ini . For example:

[General]

UsePitchForWeapons = 1

CustomFolder_GIS =

CustomFolder_DB =

CustomFolder_WW =

SaveAsXML = True

[Lua]

EnableSocket = 0

[.....]

If set to True, when saving a scenario manually ("Save" or "Save As..." commands on the main

menu), the scenario is saved in its raw XML format. Scenarios thus saved can be subsequently loaded

into CPE through the "Editor" menu (Editor --> Scenario Migration --> Import from file).

Page 86 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Non-interactive (Monte Carlo) analysis
(Available in PE – Optional in AE)

Monte Carlo-mode analysis is similar to interactive mode in the output options available, but differs

from it in a number of other ways:

• The scenario runs in “headless” mode, without any visualization or possibility of intervention by the user.

• The user can set the scenario to be batch-run an arbitrary number of times, to generate multiple result

sets for subsequent statistical analysis.

• Because of the headless execution, simulation performance is higher.

To run a scenario in Monte-Carlo mode, from the top-level menu click on "Editor --> Monte-Carlo

Analysis" and set the desired settings on the window that appears:

On first tab, “General”, we can select the scenario to be executed, the output folder for the event

export results, and the number of iterations. We can also specify if the analysis will run in coarse (1-

sec pulse) or fine-grained (0.1-sec pulse) mode.

On the “Export & Recording” tab we can specify the desired export destination(s). IMPORTANT NOTE:

These selections override the “ActiveExporter” setting in the EventExport.ini file. As in interactive

analysis, we can mix-and-match different destinations for different event types.

One additional option here is setting the scenario to be recorded (“Record every X seconds”). This

treats the recorder as another “data export” destination, which can be quite useful when used in

combination with the other generated data. (For example, if during analysis we notice an event of

interest, and want to understand the context under which it happened, we can use the recorded

snapshot to literally jump into the full state of the scenario at that moment and better understand

Page 87 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

how and why this event happened.). We can also select whether the generated message log will be

written on each iteration (checkbox “Write message log”).

Once all desired settings are set, click on “Start” to begin the analysis run. The execution can be

paused, resumed and aborted at any point.

Because of the inherent batch-running nature of non-interactive mode, the path locations of the

generated files are different. They are grouped under folders representing the iteration under which

they were generated. For example, for iteration #3 in an analysis run, the file paths will be:

• For CSV format : [top-level writable folder]\Analysis_MC\3\xxx.csv (multiple files, one for each

event type, and even more if the "SplitFilesBySide" option is enabled)

• For XML : [top-level writable folder]\Analysis_MC\3\EventExport.xml (single file)

• For MS-Access: [top-level writable folder]\Analysis_MC\3\EventExport.mdb (single file)

• For Tacview1x/Tacview2x: [top-level writable folder]\Analysis_MC\3\Tacview1x.acmi and

Tacview2x.acmi respectively.

• For SIMDIS: [top-level writable folder]\Analysis_MC\3\SIMDIS.asi

• For the .rec file produced by the Command recorder (for playback & resume), if enabled: [top-

level writable folder]\Analysis_MC\3\3.rec

 Regardless of the number of iterations, there will also be a "Summary.txt" file generated on the [top-

level writable folder]\Analysis_MC folder, listing the summary results (losses & expenditures etc.) of

each iteration. This allows a quick overview of the analysis run (handy for quickly getting the averages

and picking up outliers for subsequent scrutiny).

CAUTION: Each time a new Monte-Carlo run commences, the files generated by the last one are

erased. So, if the analysis workflow is along the lines of "let it run, then go over results of run #1 while

run #2 executes", it is necessary to copy/move the entire [top-level writable folder]\Analysis_MC

folder elsewhere for deeper processing before commencing the next run.

Page 88 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Performance tune-up: Avoiding common pitfalls in interactive & Monte-Carlo analysis

If you encounter a slowdown/freeze in the execution of an interactive analysis or Monte-Carlo run,

this can usually be traced to one of two culprits:

1) The scenario itself encounters some performance or RAM bottleneck/hotspot, or

2) There is a bottleneck in the event export itself.

There are two quick checks that you can perform in order to narrow down the likely cause of the

issue:

1) Perform a “dry run” of the scenario, with all export options de-selected:

If the scenario runs for a prolonged time without any slowdown/freeze, it is almost certainly an issue

on the export side. If the problem persists, there is probably a problem on the scenario itself.

2) Do a normal test run of the scenario, with your desired destinations enabled, and observe the

event-queue numbers shown at the black status bar on the top of the map area. For example:

Page 89 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

If any of the queue numbers displayed there is over 300-400K, there is likely a problem with event

export.

If the problem is in the scenario itself:

If possible, it is highly recommended to share the scenario (or a sanitized version of it, if sensitive)

with the Command-PE development team. Most/all of the "common" performance culprits have

long been weeded out of the sim codebase, so any bottlenecks still appearing are likely to be the

result of "perfect storms" of unusual (and individually harmless) circumstances. The dev team can

diagnose such issues and usually resolve them promptly (or, if impossible to directly solve, provide

advice for workarounds).

If the problem lies with the export of generated events:

This is a far more common case in our experience. In order to run the actual simulation as fast as

possible, Command does not export the generated events "in line" with sim execution; instead, it

offloads them to dedicated export threads (one per export destination), which buffer and send/write

the events as appropriate. These buffers exist as in-memory queues (with one exception, see below),

and if for any reason these queues get too large in size (400-500.000 is a common threshold) then

the program (and indeed the OS itself, depending on available total memory) may begin to suffer

from RAM starvation and exhibit slowdowns and eventually freezes.

In order to understand the best practices for avoiding such a situation, we need a short overview of

the nature & peculiarities of each export type:

* CSV: This writes the generated events to a comma-delimited raw text file. This is the fastest on-

disk option and the most commonly used due to its versatility (the CSV file can be directly opened in

tabular form in Excel, imported to a database etc.). A large queue size in this exporter typically

means a slow writing speed, which can be the result of:

a) Slow storage medium, i.e. a slow mechanical hard disk (unfortunately this is still common in many

laptops). Fast storage hardware is highly recommended: Any SSD is a large improvement over any

HDD, and if available a RAM-disk (https://en.wikipedia.org/wiki/RAM_drive) volume is ideal.

b) A particularly intrusive antivirus software. Many AVs monitor file operations carefully and will

inspect every write operation to disk for possible malware behavior (Norton Antivirus is a

particularly draconian example). This can grind the event export speed to a trickle even on lightning-

fast storage hardware. Thankfully, most AVs offer the ability to exclude specific files and folders from

real-time monitoring. Therefore, excluding the files/folders in which the events are being written

should resolve the problem.

* XML: This writes the generated events to an XML-formatted file. This is slightly slower than CSV

but otherwise similar in method and performance, and the same pitfalls and guidelines apply.

* MS Access: This is the only exporter type that uses a disk-backed queue instead of a RAM-based

one, and for good reason: Microsoft's Access database is painfully slow in inserting data, even with

superfast storage hardware (the bottleneck is at Access's low-level routines for inserting data to

tables), so adopting a RAM-based queue for this exporter would lead to RAM exhaustion almost

immediately during a Monte-Carlo run. Technically, the disk-based queue also means that even very

https://en.wikipedia.org/wiki/RAM_drive

Page 90 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

large queue sizes are unlikely to cause RAM starvation-related slowdowns/freezes; however, piling

generated events to the queue itself is a relatively slow operation (because it actually writes to disk

instead of writing to a RAM queue) so the actual sim execution slows in speed. Generally, we do not

recommend using Access for any high-frequency events (e.g. unit positions, sensor detection checks,

fuel consumption etc.).

* Tacview1x/Tacview2x/SIMDIS: These exporter types are similar to CSV & XML in that they write to

disk files, which are then read by external applications. The pitfalls and guidelines of CSV also apply

here.

* TacviewRT: This exporter type buffers Tacview-relevant events to be streamed to a running

instance of Tacview in real time. If no Tacview instance is connected to Command, then the buffered

events are discarded instead of piling up, so this exporter is highly unlikely to cause any performance

issues (there has been no reported issue so far).

* SQL Server: Microsoft's flagship DB server solution is currently our fastest option for exporting

events. It effortlessly swallows even high-frequency events (e.g. unit positions, sensor detection

checks, fuel consumption etc.) from very large scenarios, so we recommend it for such setups. The

only case where a queue ballooning has been observed is when the connection to the DB server is

temporarily interrupted or broken altogether. Interruptions of up to a few seconds can be

compensated by the queue buffer, but longer-duration disruption can cause a problem.

* SQLite: This exporter inserts events into an SQLite database. Contrary to SQL Server, SQLite is a

file-based DB solution (similar in this respect to MS-Access) but a very fast one, only losing slightly in

raw speed to CSV. The pitfalls and guidelines of CSV also apply here.

Regardless of the destination type(s) selected, some performance guidelines are universal:

1) Export only the event types that are of interest.

2) Take advantage of the ability to export different event types to different destinations

concurrently. For example, in a large scenario, high-volume events can be directed to a fast

consumer like a CSV file or SQL Server or SQLite database, while events typically happening less

frequently (e.g. fuel transfer, weapon impacts etc.) may be written to less-performant destinations

that may offer other advantages.

3) Experiment! Each scenario is unique in the frequency & volume of events it generates, and

underlying hardware is an important factor, so frequent measurements and tailoring of the export

settings to the situation at hand are essential for trouble-free statistical runs.

Page 91 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Customizing simulation fidelity

Command is processing simulation into time-slices / steps of variable value. A simulated second in

Command can either be performed in one step (time resolution = 1 sec) or ten steps (time resolution

= 0.1 sec).

By default, Command uses a “hybrid” resolution mode: Time resolution will work in 0.1-sec steps in

all time compression modes except for the ‘turbo’ mode, symbolized with a flame in the UI. When in

turbo mode, Command switches to the coarse (1-sec slice) resolution. Therefore, time resolution is

tied to the time compression selected.

It is, however, sometimes desirable to dynamically alter the time resolution based on simulation

events (i.e. use fine-grained resolution when friendly units are in a threat area, while using coarse

resolution in other circumstances). CPE provides the ability to perform this both through the user

interface and through Lua scripting. It is also possible to “lock” the game resolution throughout the

course of the scenario.

Using the interface

The menu button “Game → Lock / Unlock simulation fidelity” will either lock or unlock the time

resolution. Locking the time resolution means that time compression will no longer affect the time

resolution (ie. the fidelity remains constant regardless of time acceleration):

Enabling this option also disables time compression interactions, and add a new toggle to control the

time resolution:

Using Lua

Likewise, we can use the ScenEdit_SetSimulationFidelity method to forcefully set the time

resolution (valid values are 0.1 and 1.0). This call will implicitly lock the time resolution:

We can also use the ScenEdit_LockSimulationFidelity method to explicitly lock/unlock the time

resolution:

ScenEdit_SetSimulationFidelity(Fidelity As Single) As String

ScenEdit_LockSimulationFidelity(IsLocked As Boolean)

Page 92 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Multiple-instance execution & folder redirection
(Available in PE & AE)

CPE supports running multiple instances of the program in parallel. This can offer two main

advantages, particularly in the context of scenario analysis with multiple scenarios or variations of the

same basic scenario:

• The multiple scenarios can be set up to run for analysis concurrently on the multiple instances,

instead of sequentially. As the outputted results of analysis can be examined as they are

generated, well before each analysis run is concluded, this allows much faster comparison of

the results of different scenario inputs.

• It allows better utilization of system resources in powerful hardware. In modern PC systems,

Command’s core simulation engine generally takes advantage of up to 6-7 logical CPU threads;

higher utilization is possible but less common (line-of-sight calculations can easily spike to

100% CPU usage). Modern systems can offer more CPU threads than this, and such setups are

becoming increasingly affordable. By spawning additional running instances, and provided

sufficient RAM is available, Command can make full use of such hardware to dramatically

accelerate the analysis cycle.

There are two strategies to utilize this capability:

1) Copy the entire CPE installation folder to a different file system location and run the second

instance from there. (Running multiple instances from the same exact file system executable

location is not currently supported).

In this usage scenario, it can be useful to visually distinguish the two+ running instances in

order to avoid confusion. To support this, the configuration file CPE.ini now supports an

additional parameter, “InstanceName”. For example:

This instance name is then displayed on the main window of Command PE when running:

….thus making it easy to distinguish between multiple instances running on the same system.

This method offers simplicity but is somewhat wasteful in storage space, as the entire

installation folder, with its gigabytes of data, is duplicated. This leads us to the second method:

Page 93 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

2) Configure the mirror copies of the original installation to have their most storage-expensive

data folders redirect to the original one. The larger folders in terms of storage are the \DB

(databases), \GIS (GIS and terrain data) and \WW (map tiles and additional GIS data) folders.

Each of them can be redirected to the equivalent folders of the original installation,

dramatically reducing the storage footprint of the “clone” instance(s).

Let us consider an example of the latter method. Assume that the original installation is on the path

“C:\CMANO-PE\”. We copy the entire installation folder to any other point in the file system. Here is

how the configuration files for each instance would be set up:

Original

Clone 1

Once the clone instance is properly configured, we can delete its own \DB, \GIS and \WW folders

entirely.

In this example, redirecting the data-hungry folders of the clone instance to the equivalent folders of

the original installation has enabled us to shrink its storage footprint from 10-15GB down to 600-

700MB. This makes it practical to host and run multiple instances of the application even in

environments where storage space is at a premium (e.g. when running Command on a high-

performance, low-capacity storage medium such as an SSD or RAM-drive). It also ensures that all

running instances are basing their simulation run on the same read-only data (platform databases,

terrain & environment, other GIS info etc.).

A caveat here: The Command PE installer, during the installation, stores to the registry the installation

path. This information is subsequently used by follow-on installers, updaters etc. to perform

maintenance or updates to the installation. Copies of the installation folder will not receive this

maintenance. For this reason, it is good practice to “wipe and re-spawn” the additional copies of the

original installation folder after updates, fixes etc. are applied. This holds true for either method

described above.

Page 94 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Tacview visualization
(Available in PE & AE)

CPE offers the ability to export simulation data to Tacview, a popular 3D visualization tool

(http://www.tacview.net/). This provides improved situational awareness of an engagement as well

as more options for visual analysis (such as jumping into the viewpoint of a specific unit, stepping

forwards and backwards in time, accelerating playback etc.).

Tacview supports two input modes: Reading from a pre-generated ACMI text file, or consuming a real-

time data stream. Command PE supports both these modes.

Exporting to file

To configure exporting to ACMI text file, edit the file EventExport.ini and set the ActiveExporter

property to “Tacview2x” (Tacview 1.x format support is deprecated but maintained for backwards-

compatibility):

ActiveExporter = Tacview2x

(This can be combined with any other destination for which we want to export data, e.g.
ActiveExporter = Tacview2x, CSV)

If performing an interactive analysis run, Command must be restarted in order for this change to

take effect. If running a Monte-Carlo session, we can set Tacview as an export destination directly

from the Monte-Carlo window.

Once the scenario runs and the ACMI file is generated (located at [top-level writable

folder]\Tacview2x.acmi), we can then open it with Tacview.

http://www.tacview.net/

Page 95 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Real-time streaming

Setting up real-time streaming to Tacview is slightly more involved. First, the ActiveExporter

property on EventExport.ini must be set to “TacviewRT”:

ActiveExporter = TacviewRT

Then Command must be restarted, and the desired scenario loaded (but not yet started). Then start

Tacview, and from its main menu select “Recording → Real-Time Telemetry”:

The “Real-time Telemetry” window will appear, with several customizable options. Command listens

on the default port (42762) and does not use a password for this data stream so no change is

necessary. Just click on “Connect”, and Tacview should connect to Command’s stream socket and

begin displaying Command’s scenario environment.

Command can also stream to an instance of Tacview running on a different machine on the network.

In this case, the “Data Recorder Address” field above will need to be filled in with the IP address of the

machine running Command. (The CPE-running machine will also need to have its firewall configured

to enable port 42674).

Export support for other 3D visualization tools, platforms & protocols such as CIGI, STK & Cesium can

be added upon request.

Page 96 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

SIMDIS visualization
(Available in PE & AE)

Another 3D visualization option for Command PE is SIMDIS (https://simdis.nrl.navy.mil/), an image-

generator and analysis tool produced by the US Office of Naval Research. As with Tacview, SIMDIS

provides rich options for visual demonstration & analysis together with complete time- and POV-

location control. SIMDIS is currently arguably better suited than Tacview on visualization of naval (and

especially underwater) engagements as it offers a wider variety of naval platform models out of the

box, as well as importing a wide range of terrain data, including detailed bathymetric surfaces

(something that Tacview currently lacks).

Similar to Tacview, the primary means of input is a raw text file in .ASI format. To configure exporting

to the .ASI text file, edit the file EventExport.ini and set the ActiveExporter property to “SIMDIS”:

ActiveExporter = SIMDIS

(This can be combined with any other destination for which we want to export data, e.g.
ActiveExporter = SIMDIS, CSV)

If performing an interactive analysis run, Command must be restarted in order for this change to take

effect. If running a Monte-Carlo session, we can set SIMDIS as an export destination directly from the

Monte-Carlo window.

Once the scenario runs and the output file is generated (located at [top-level writable

folder]\SIMDIS.asi), we can then open it with SIMDIS.

https://simdis.nrl.navy.mil/

Page 97 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

On-demand imagery
(Available in PE & AE)

Command-PE offers additional map-layer options compared to the commercial CMO version. One of

these additions is the ability to use on-demand overhead imagery from Microsoft’s Bing Maps service.

To enable this, simply enable the “Virtual Earth” layer from Command’s main menu → View:

(Virtual Earth was the original name of Microsoft’s overhead imagery service before it was renamed

to Bing Maps).

It may take a few seconds, but the map view should be populated with imagery from Microsoft’s BM

servers:

Page 98 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

This ability can be particularly useful when constructing installations that precisely mirror their real-

counterparts in layout. In the example below, we are recreating Souda airbase (Crete), by literally

placing hardened aircraft shelter (HAS) facilities right at the coordinates of their real-life analogues,

with sub-meter precision:

The resulting complete installation can then be exported to an .inst file and re-used on any other

scenario, just like in the commercial version of CMO.

Additional on-demand imagery sources can be integrated upon request.

NOTE #1: This feature works only if the computer running Command-PE has an active Internet

connection.

NOTE #2: Legal useage of this feature requires that the user is covered by a licensing agreement with

Microsoft.

Custom Overlays 101

As in the commercial version of Command, CPE also allows using custom overlay imagery for specific

areas. To add overlays to CPE, you must first use third-party GIS/mapping software to generate geo-

referenced imagery files; Then you can import them to your scenario using an in-app interface

To import the generated georeferenced image into CPE, launch the application, create at least one

side (or load a pre-existing scenario) and click the “Custom Overlay” button:

Page 99 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

When the Custom Layer Manager appears press the Add Layer button. This will launch a standard

Windows “Add File” dialog.

Choose the overlay file and allow the display time to load. Once loaded, you will see it in the bottom

list. The most recent overlay will be highest on the list. To remove an overlay, simply select it in the

Custom Layer Manager and press the Remove Selected Button.

Page 100 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

DATA & MODEL EDITING

Database Editor
(Available in PE only)

Command-PE includes a comprehensive DB editor that allows complete customization of every

aspect of the database. For detailed information on the layout of the database and instructions

on how to edit it, please refer to the dedicated DB-editor manual.

DBTools
Beginning from v1.14, the DB-editing tools and documentation are included in their own zipped

file and can be extracted and used anywhere on the file system. Chief among them, the

DBTools.exe program is used for a number of functions:

• Database conversion

• Database validation prior to conversion (ensures that no logical errors are present in the

database, for example a weapon is present in a platform without the necessary datalink or

illuminator for its guidance)

• One-click updating of the database schema to the current version (migrating to the current

schema is essential for taking advantage of new simulation features).

Migrating existing DBs to new schema
Using the DBTools app, click on the tab “Update schema”:

Select the desired database to update, and click the “Update database to current schema” button.

Migrating a scenario to a new custom database
After you have created a new custom database (or new version of an existing one), a common

use case is to migrate an existing scenario to it. Command-PE makes this easy with the addition

of a tailored function on the “Database” submenu of the Editor menu:

Page 101 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Clicking on “Migrate scenario to specific DB” will bring up a dialog that allows you to select the

database file in question. After this, the standard “migrate scenario to DB” window appears and

presents the various options for the migration.

Page 102 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Lua I/O
(Available in PE – Optional in AE)

Lua has a number of built-in I/O features for interaction with local storage, network etc. The

commercial version of CMO disables these features for security reasons (being able, for example, to

read an external text file which can then execute arbitrary code against local system resources could

pose a potential attack vector). CPE also disables them by default, but allows optionally enabling them

for added functionality. The configuration for this feature is stored on [top-level writable

folder]\Config\CPE.ini:

[Lua]

AllowIO = 0 0 to disable, 1 to enable.

Command must be restarted in order for changes in these settings to take effect.

XML import/export
(Available in PE only)

Command-PE offers the ability to export its entire scenario object graph (all its internal objects like sides,

missions, objectives, events, units, unit components etc.) to an XML file. This can then be parsed,

analysed etc. The XML document can be modified and re-imported into Command, absorbing all the

changes affected.

To export the scenario state, from the main menu select Editor → Scenario Migration → Export to file.

This is an example of the XML output, after being formatted for legibility:

After making any changes, the XML can be re-imported via Editor → Scenario Migration → Import from

file.

This is an additional/alternative way to the Lua API to make changes in the simulation state. It is arguably

more powerful, because it allows altering every facet of the sim state whereas the Lua API is

precise/"strict" in what allows to change. But this freedom and power also come with risks - there are

Page 103 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

absolutely no integrity or sanity checks when directly editing the scenario graph, contrary to the careful

checks that accompany Lua calls.

Page 104 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Mechanics Overrides
(Available in PE Premium only)

A common request from users of Command-PE is the ability to substitute Command's own internal

models with their own. CPE offers this ability through Mechanics Overrides.

Many of CPE's internal simulation sequences, such as the endgame calculations prior to a guided weapon

impact, or sensor detections, or AI decisions etc., are explicitly architected to allow for being

extended/overridden by custom methods. These are typically developed on a bespoke basis in order to

make use of data in the customer's possession.

These overrides are also configurable on a per-session basis. The configuration file for them is

Overrides.ini, located in the [top-level writable folder]\Config folder:

Here is an example of a finely-tuned override. A customer happened to have in their possession reams of

data on the performance of the AIM-120C against the baseline MiG-29S, and wished to use this data for

this specific weapon-target combination, while still relying on Command's models for all other

engagements. So, the missile endgame pipeline was extended to do precisely that:

Because the models (and frequently also data) that the customer wishes to use in CPE are often

classified, the override mechanism is deliberately very flexible. The process can be as simple as reading a

local text file (pre-generated data tables), reading from a database, or alternatively calling a remote

endpoint and providing it with all the parameters so that the actual "business logic" is executed on the

remote system, the result then being returned to Command.

Sections of the simulation mechanics that can be extended/replaced through overrides include:

• Weapon endgame/impact calculations

• Sensor detections

• Kinematics

• Tactical AI decision making

• Operational-level AI actions

Page 105 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Available public overrides

The default CPE installation contains a number of built-in, public-visible overrides. Additional

customer-private overrides are also embedded in the code, and documentation for them is provided

separately to respective customers.

As the Mechanics Overrides framework is deliberately architected for great flexibility, additional

overrides can be implemented and added per customer priorities.

The publicly available overrides in v2.2 are:

• Public.DisablePointDefence : As the name implies, this override disables the entire point-

defence sequence that transpires when a weapon is about to perform its endgame attack on a

unit. The point-defence step includes decoys, DECM and expendables (e.g. chaff/flares)

attempting to defeat the incoming weapon. Disabling this sequence means that the weapon will

definitely reach the final attempt to impact the unit being engaged. This can be useful, for

example, to isolate the subsequent endgame calculation or apply a pre-defined hit estimate

without concern for point-defence systems interfering.

• Public.AAW_WeaponPH : This override replaces the built-in terminal engagement model for

guided AAW weapons, and uses pre-defined probability values instead. The values are read

from an Excel file, located at:

[top-level writable folder]\Resources\Overrides\Public.AAW_WeaponPH\Data.xls .

The file contains some sample representative data:

To populate with additional data, the respective weapon and target database record ID s must be

provided, as well as the range bracket for which the PH figure is valid. As in the provided sample,

a weapon-target pairing can be either a single record (if it is assumed that the PH is constant

regardless of range) or multiple records, each using the same weapon-target pairing but

corresponding to different range brackets.

During runtime, the sim code checks if the characteristics of the engagement (weapon DBID,

target DBID, and range from launch point) match any of the records on the Excel sheet, and if

they do, skips the built-in calculations and instead applies these values.

• Public.CEP_RNG : This override replaces the built-in random number generator (RNG) used

for CEP-related weapon impact calculations with an alternative one.

This override is configurable through its entry on Overrides.ini:

Page 106 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Whereas the default RNG uses uniform distribution of values, the alternative RNG employs

normal distribution, and it is assumed that the impact CEP equals 1.1774 x sigma [standard

deviation]. (This is based on calculations on D.H. Wagner’s “Naval Operations Analysis”).

The practical result of using the normal-based RNG is that the concentration of missed

impacts is closer to the targeted unit than in the case of uniform distribution (i.e. there are a

lot more “near-misses” than far-wide ones). This can be an important factor for area

weapons, proximity blast damage calculations etc.

• Public.NoContactExchange : By default, allied sides automatically exchange their contact

reports & updates. When this override is active, allied sides no longer exchange contact

information; instead every such information must be routed manually. This can be useful in

explicitly modeling communications between different friendly sides.

• Public.Splat3D: This (new in v2.2) override allows customizing the signature type (usually

radar, but all signature types are possible) of any aircraft in the simulation, on a per-DBID

basis.

The override is triggered by the following two necessary conditions:

Public.Splat3D added as an active override in the Overrides.ini file, as in this example:

And the existence of a correctly named csv in the [Writable

folder]\Resources\Overrides\Public.Splat3D directory, as in this example:

The name of the csv file is very important. There are 3 components to a Splat3D override

CSV filename:

Unit type: Currently only Aircraft is supported.

Page 107 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

DBID: This is the DBID of the aircraft in the Command database.

Band: RadarAD or RadarEM. Command breaks down the radar spectrum into A-D radar

bands and E-M radar bands for RCS calculations.

For the 3D RCS file format, we deliberately follow the format used in similar AFSIM signature

files:

Page 108 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The first row and column describe the coordinate of the RCS data value.

The RCS data value is in dbsm. Floating point values are supported.

The first row denotes the pitch (vertical elevation) of the datavalue.

The first column denotes the bearing (horizontal azimuth) of the RCS datavalue:

Page 109 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

For simplicity, the logic currently followed for sampling intermediate values is “snap to nearest-

neighbor”. So for example if the RCS value at 150 degrees azimuth is X and the value at 160 degrees

is Y, a value query at 153 degrees will return X while a query at 158 degrees will return Y.

Querying custom values through the Lua API

In order to support testing/debugging of the Splat3D override, a new method has been added to the

Lua API, which can query the RCS of a target unit, from the direction of a sensor unit in the specified

band:

Tool_QueryRCS{sensorunitname='Unit B', targetunitname='Unit A',
SIGNATURETYPE='Radar_A_D'}

The signature type can be any of:

HullSonar_PassiveOnly_VLF

HullSonar_PassiveOnly_LF

HullSonar_PassiveOnly_MF

HullSonar_PassiveOnly_HF

ActiveSonar

Visual_Detect

Visual_ID

IR_Detect

IR_ID

Radar_A_D

Radar_E_M

Although developed as a test tool for the Splat3D override, this new Lua method can also be used as

a general signature query for any platform, whether the override applies to them or not.

Page 110 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Lua Event Hooks
(Available in PE Premium only)

Code-side mechanics overrides are typically implemented in one of two ways: Oftentimes the end

customer full shares the model & data with the CPE development team, and the information is fully

absorbed into the redistributed CPE release. In other cases, the customer provides “endpoints” (a

text file, a compiled DLL, a web service, a database server etc.) that encapsulate/screen the

confidential/proprietary model and the dev team then adds extension “stubs” in the sim code that

reach out to these endpoints in order to fulfill the desired integration.

A common attribute of such integrations is that the CPE development team needs to become aware

of the customer needs and be involved, to a greater or lesser extent. This is obviously undesirable in

cases where even the mere fact of the override desire is confidential (i.e. when a very sensitive new

technology or model is desired to be tested in Command’s virtual environment). Lua event-hooks

offer a new alternative for such cases.

Event hooks provide a new mechanism for selectively overriding or extending built-in simulation

steps. Compared to existing options for mechanics overrides, they provide greater flexibility and

complete isolation from the CPE development team (i.e.. Overrides can be developed without any

knowledge / involvement / assistance from the dev team).

The development team has added, at specific simulation events, hooks that can be extended

through Lua scripting to either provide additional functionality (e.g. extended or special logging for

the event taking place) or even the ability to completely override the event about to take place (e.g.

replace the weapon endgame calculations). By making these overrides wholly script-based, end

users can develop the override logics at their own pace and without any assistance from the CPE dev

team.

NOTE: Some of these events, like unit movement, occur with very high frequency within the

simulation. This, combined with the fact that the current Lua environment is strictly single-threaded,

means that enabling high-frequency event hooks can result in a dramatic drop in sim performance in

any sizable scenario. Please use in moderation!

As of CPE v2.2.3, the following Lua event hooks are available:

• WeaponFired – invoked after a weapon has been fired

• WeaponImpactsBefore – invoked before a weapon impacts, with an opportunity for

override

• WeaponImpactsAfter – invoked after a weapon has impacted

• SensorCheckBefore – invoked before a sensor detection check occurs, with an opportunity

to override

• SensorCheckAfter – invoked after a sensor detection check has occurred, with an

opportunity to get a complete report

• ContactUpdateAfter – invoked after a new contact has been detected or data on a known

contact has been updated

• ContactUpdateFromOffGridAfter – invoked after an out-of-communication unit re-

establishes communication and shares its contacts.

• UnitMovesBefore – invoked before a unit executes its movement action, with an

opportunity for override

Page 111 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

• UnitMovesAfter – invoked after a unit executes its movement action; it cannot override the

built-in movement logics, but can supplement them (e.g. implement additional movement

due to wind or sea drift)

• OnStatusChange – invoked after a unit’s air-ops/docking-ops status changes, e.g. an aircraft

takes off or a ship docks to a pier.

Let us walk through examples of how we can use the hooks to add custom functionality.

This is a simple script that provides diagnostic information when a weapon is fired:

Notice the function signature; this is precisely mapped to the in-sim code and thus must remain

unchanged in any custom script in order to correctly communicate with the running simulation.

This function can be “registered” with the running scenario through any number of ways: It can be

executed from the built-in “Lua console”, or executed as a special action, or executed as part of a

normal Lua script (e.g. driven by a built-in simulation event or fed through the external TCP/IP

connection. Once registered, the function remains active throughout the execution of the scenario.

Here is an example function for the “Weapon impacts – before” hook:

In this case, by returning “nil” to the simulation, we are signaling that this function is not intended to

override the built-in weapon impact mechanics. If, however, we returned any other object or value,

function WeaponFired(target, weapon)

print('Executing')

 print(target)

 print(Weapon)

 local Message = "Missile "..weapon.name.. " fired at " .. target.name

 ScenEdit_MsgBox(Message, 1)

 return {true,"okay"}

end

function WeaponImpactsBefore(weapon, target)

print('Executing')

 print(target)

 print(Weapon)

 local Message = "Missile "..weapon.name.. " about to hit "

 if target ~= nil then

Message = Message .. target.name else Message = Message .. 'nothing'

end

 ScenEdit_MsgBox(Message, 1)

 return nil

end

Page 112 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

we would be signaling that we are handling the impact step within our script. In this way, we can

entirely override/replace the internal weapon impact calculations.

Here is an example script for the “Weapon impacts – after” hook:

Like the “Weapon is fired” hook, this one is also “one way”, ie. no override of the built-in method is

available at the moment.

function WeaponImpactsAfter(weapon, target, result)

print('Executing')

 print(target)

 print(Weapon)

 local Message = "Missile "..weapon.name

 if result == nil then Message = Message .. " impacts "

 elseif result == true then Message = Message .. " hits "

 else Message = Message .. " misses "

 end

 if target ~= nil then

Message = Message .. target.name

else

Message = Message .. 'nothing'

end

 ScenEdit_MsgBox(Message, 1)

 return nil

end

Page 113 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Finally, an example of a sensor detection check override. In this case we are wiring the “Sensor check

– Before” event.

Note that we are handling precise and imprecise detections different. If a detection is made with a

precise sensor, we just return a “true” value and the built-in sensor pipeline handles the rest. If a

detection is made using an imprecise sensor (e.g. ESM or passive sonar) we can pass back a list of

coordinates that represent the “area of uncertainty” (AOU) of the detection made.

NOTE: Sample hook scripts for all available event hooks are located on [Data Folder]\Resources\Lua

Hooks.

Additional simulation events are planned to be extensible through the Lua event hook framework, in

order to offer further oppoirtunities for extensibility. Potential candidates may include:

• AI/OODA decisions (evaluate targets & threats, determine primary target & threat, evaluate

own operational status, assign weapons etc.)

• Logistics

• Environmental effects

function SensorCheckBefore(theSensor, theSensorParent, theTarget)

 local Message = "Sensor: " ..theSensor.name.. " about to attempt detection on: "

..theTarget.name

 print(Message)

 local precise = theSensor:IsPreciseCheck(theSensorParent, theTarget)

 print(precise)

 if precise == true then

 return (precise)

 else

 --build AOU

 local AOU = {}

 AOU = World_GetCircleFromPoint({

 latitude=theTarget.latitude,

 longitude=theTarget.longitude,

 radius=50,

 numpoints = 72})

 print('imprecise with AOU')

 print(AOU)

 return true, AOU

 end

end

Page 114 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

INTEROPERABILITY

DIS support
(Available in PE Premium only)

Beginning from v1.14, CPE supports the Distributed Interactive Simulation (DIS) protocol for

enhanced interoperability with other simulation products. Protocol version compliance is mostly v6

(1998) with some additions from v7 (2012) to implement some of the most recent DIS features like

underwater emissions.

NOTE: DIS connectivity is currently supported only for scenarios using the DB3000 database and its

derivatives. CWDB scenarios are not supported at the moment.

The following PDU types are currently supported:

• Entity state

• Weapon fire

• Weapon detonation

• Start/Resume & Stop/Freeze (receive-only)

• Underwater acoustic emission (passive sonar only)

Command can participate in a DIS session either in a completely “ad hoc” fashion (i.e. join or start a

session by transmitting PDUs immediately on startup) without regard for time synchronization, or

cooperate with a simulation-controller in an organized manner (do not start transmitting and

receiving until it receives a proper Start/Resume PDU). The latter is useful for sessions where time-

coordination is essential.

Configuration

DIS settings are controlled by editing the configuration file SimConnect.ini, located in the [top-level

writable folder]\Config folder:

Page 115 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Upon startup, if DIS has been enabled then a configuration window appears, which enables

confirming or tweaking the DIS connection options:

Through this window, users can select the desired network adapter to use, specify the desired port

and subnet mask (this can help solve issues in complex network setups) as well as tweak and confirm

the DIS-specific options like exercise, force, site and applications IDs.

In order to activate DIS, the “ActiveConnector” property in the “General” section must be set to

“DIS”. (The remote-entity framework developed to enable DIS support is structured in such a way as

to enable additional connectors in future updates, such as HLA, CIGI, AIS, ADS-B etc.)

On the DIS-specific settings, the ExerciseID, SiteID, ApplicationID and ForceID values represent the

exercise, site, application and force identifiers used when participating in a DIS session.

The “IPAddress” value specifies IP address for broadcasting & receiving PDUs. This address is used

both to calculate the broadcast IP address (in combination with the connection’s subnet mask) and

also to "pin" the transmission & receival of DIS packets to a specific network interface card (NIC),

which can be handy if running on a system with multiple NICs.

The “Port” value indicates the TCP/IP port used both for sending and receiving PDUs (only broadcast

mode is currently supported).

The “AlwaysActive” field defines how CPE will join/start a DIS session. If set to “True”, CPE will

immediately start broadcasting and receiving messages on startup, without any consideration to

time synchronization. This is useful for quick hookup tests or for cases where synchronized simulated

time is not essential.

For environments where following a common simulated time is important, or where a session must

commence at a specific real-world time, it is recommended to set this value to “False”. In this case,

CPE will not immediately join a session but will instead wait for a proper Start/Resume PDU from the

controller application, to define the real-world start time and the simulated scenario time.

With AlwaysActive set to “False”, after CPE has received a Start/Resume PDU defining when the

session will start, it displays a running countdown-to-start on the caption text:

Page 116 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Once CPE has actually joined a DIS session (or has automatically started, with AlwaysActive set to

“True”), the caption text changes to indicate this:

Debug mode

If “Debug mode” is enabled, when the DIS-enabled scenario starts, an additional “Debug” window is

shown, which presents various diagnostic information about incoming and outgoing DIS PDUs:

Page 117 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Additionally, in debug mode units rendered on the map have additional DIS-related information

included on their datablock text, as in these examples:

The special case of the UA PDU

The Underwater Acoustic Emission (UA) PDU warrants special mention. One of its essential fields,
“Passive Parameter Index”, is used to indicate a unit’s passive sonar signature (ie. emitted noise
level).

According to the IEEE spec (IEEE 1278.1-2012, section “7.6.4 Underwater Acoustic (UA) PDU”), “[…]
This field indicates which [common acoustic database] record (or file) shall be used in the definition
of passive signature (unintentional) emissions of the entity. The indicated database record (or file)
shall define all noise generated”. However, no mention of this “common acoustic database” is
present anywhere in the specification; accordingly, it is reasonable to assume that such a resource
will be site/user-specific.

Accordingly, Command PE’s default implementation is to use the “Passive Parameter Index” field to
store (and retrieve) a unit’s desired speed, ie. the “make turns for X knots” value. This effectively
provides the powerplant/shaft operating speed and thus noise. Combined with the flow noise value

Page 118 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

(obtained by looking up the unit’s actual speed from its latest available Entity-state PDU record), this
allows determining a unit’s complete passive sonar noise profile.

This default behavior for the “Passive Parameter Index” field can be altered via a suitable Mechanics
Override.

Associating DIS and CPE entities

The “translation” between the DIS entity notation syntax (e.g. 1.1.225.1.2.0) and CPE’s platforms and

systems is handled by association tables in Excel files, located in: [top-level writable

folder]\Resources\DIS\ . Each of the Excel files (Aircraft.xls, Ship.xls etc.) corresponds to the

relevant database annex and each record has a matching reference to the appropriate (exact or

nearest match) DIS entity record:

Storing these associations on the Excel files means that end-users can easily tailor them to their own

custom needs and extend them as appropriate (e.g. add more associations for platforms/systems

that they have created) without the intervention of the dev team.

The file should match between the various command instances running DIS and should preferably

have only 1-to-1 associations in order to avoid “translation” issues when receiving incoming PDUs.

The loaded scenario must contain only units belonging to the side that matches the instance's force-

ID, and those units must be properly associated with a DIS ID in the association files.

In case a unit with no matching DIS ID is present in the scenario, that unit WILL NOT be broadcast on

the DIS protocol and (if debug mode is enabled) an entry about that unit will be visible in the

“Missing DIS IDs” tab in the debug window.

Page 119 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

TCP/IP-Socket access to Lua API
(Available in PE – Optional in AE)

CPE allows connecting to the Lua API of the currently running scenario through a standard TCP/IP

socket. The configuration for this feature is stored on [top-level writable folder]\Config\CPE.ini:

[Lua]

EnableSocket = 0 0 to disable, 1 to enable

SocketPort = 7777 default port, can be changed

EncodingMode = 0 encoding type

Command must be restarted in order for changes in these settings to take effect.

The socket server running on the specified port receives all Lua commands and transfers them to the

Lua API for the currently running scenario.

The “Encoding Mode” property allows using different encoding types when connecting to Lua TCP

socket. Valid values are:

• 0 → Big-endian Unicode (default)

• 1 → Local system default

• 2 → Unicode

• 3 → ASCII

• 7 → UTF-7

• 8 → UTF-8

• 32 → UTF-32

The value set is respect for both incoming and outgoing data (i.e. responses from the Lua API will use

the same encoding).

External programs that use this feature must first connect to the specified socket before sending

commands. Otherwise a “connection not established” exception is likely to be generated.

The syntax for the Lua scripts is exactly the same as when using the Lua console. The only necessary

addition is that, for scripts that execute input without returning a value (e.g. to add a new unit), the

script must be predated by the comment “--script “. This signals to the Lua interpreter that the script

should be executed without providing any feedback. Methods that do return a value should omit this

prefix.

Page 120 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Lua TCP/IP connection examples

1) Simple socket client, written in VB.NET:

Imports System.Net.Sockets

Class MainWindow

 Private clientSocket As New System.Net.Sockets.TcpClient()

 Private Sub Button_Click(sender As Object, e As RoutedEventArgs)

 Try

 clientSocket.Connect("127.0.0.1", CInt(TB_SocketPort.Text))

 msg("Client Started")

 MsgBox("Connected!")

 Catch ex As Exception

 MsgBox("Error: " & ex.Message)

 End Try

 End Sub

 Private Sub msg(theStr As String)

 Console.WriteLine(">> " & Trim(theStr))

 End Sub

 Private Sub Button_Click_1(sender As Object, e As RoutedEventArgs)

 Dim serverStream As NetworkStream = clientSocket.GetStream()

 Dim outStream As Byte() =

System.Text.Encoding.BigEndianUnicode.GetBytes(TB_Script.Text)

 serverStream.Write(outStream, 0, outStream.Length)

 serverStream.Flush()

 Dim inStream(clientSocket.ReceiveBufferSize) As Byte

 serverStream.Read(inStream, 0, CInt(clientSocket.ReceiveBufferSize))

 Dim returndata As String =

System.Text.Encoding.BigEndianUnicode.GetString(inStream)

 returndata = returndata.Replace(vbNullChar, "")

 returndata = returndata.Remove(returndata.Length - 1)

 TB_Result.Text = returndata

 'msg("Data from Server : " + returndata)

 End Sub

End Class

2) Small, self-contained example in Python:

import socket

TCP_IP = '127.0.0.1'

TCP_PORT = 7777

BUFFER_SIZE = 1024

message_string = "--script\nScenEdit_SpecialMessage('playerside','This is written

externally')\nScenEdit_AddUnit({side='playerside',name='FFH 150

ANZAC',type='Ship',dbid=2607,latitude='-32.5144788463646',

longitude='154.963352242518'}) "

message = message_string.encode('UTF-16-BE')

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((TCP_IP, TCP_PORT))

s.send(message)

data = s.recv(BUFFER_SIZE)

print(data.decode('utf-8'))

3) More elaborate example in Python:

import socket

Page 121 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

from Misc import Status, SerpentLogging
from enum import Enum
import re
import LuaHandler
import time

class TCP_Connection:
 TCP_IP = '127.0.0.1'
 TCP_PORT = 7777
 BUFFER_SIZE = 4096
 INPUT_ENCODING = 'UTF-8'
 OUTPUT_ENCODING = 'utf-8'
 SOCKET = None
 CONNECTION_STATUS = Status.NEW

 def __init__(self):
 if TCP_Connection.CONNECTION_STATUS == Status.CONNECTED:
 self.TestConnection()
 else:
 TCP_Connection.SOCKET = socket.socket(socket.AF_INET,

socket.SOCK_STREAM)
 TCP_Connection.SOCKET.connect((TCP_Connection.TCP_IP,

TCP_Connection.TCP_PORT))
 self.TestConnection()

 def TestConnection(self):
 message =

TCP_Connection.Return(LuaHandler.SerpentFunctions.GetBuildNumber())
 if message:
 TCP_Connection.CONNECTION_STATUS = Status.CONNECTED
 SerpentLogging.PrintAndLog(f'Connected to Command via TCP:

{TCP_Connection.TCP_IP}:{TCP_Connection.TCP_PORT}')
 return Status.SUCCESSFUL
 else:
 TCP_Connection.CONNECTION_STATUS = Status.DISCONNECTED
 SerpentLogging.PrintAndLog(f'Unable to connect to Command via TCP:

{TCP_Connection.TCP_IP}:{TCP_Connection.TCP_PORT}','error')
 return Status.FAILED

 @classmethod
 def Return(self, message):
 message = message.encode(TCP_Connection.INPUT_ENCODING)
 TCP_Connection.SOCKET.send(message)
 result = b""
 while True:
 part = TCP_Connection.SOCKET.recv(TCP_Connection.BUFFER_SIZE)
 result += part
 if len(part) < TCP_Connection.BUFFER_SIZE:
 # either 0 or end of data
 break
 result = result.decode(TCP_Connection.OUTPUT_ENCODING)
 return result

Page 122 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Using .NET libraries

Beginning in v2.2.4.1, CPE has the ability to load external Microsoft .NET Framework assemblies or

libraries and use them just like it uses its built-in components. Both Microsoft official .NET libraries

(ie. members of the Common Language Runtime) as well as third-party custom libraries can be used

in this way.

For security reasons this ability is disabled by default. To enable it, open the file [Writable

root]\Config\CPE.ini and, under the [Lua] section, set/add this property: AllowCLRPackage = 1.

Two usage examples of this functionality:

threading = CLRPackage('System', 'System.Threading')

print('Sleeping...')

threading.Thread.Sleep(10000)

print('Awake!')

SystemNet = CLRPackage('System', 'System.Net')

local c = SystemNet.WebClient()

print(c)

local s = c:DownloadString('https://httpbin.org/ip')

print (s)

Page 123 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

FLOATING LICENSE MANAGER

Purpose and overview

By default, CPE searches for a license file (license.dat) placed on the main application root folder.

This implementation is geared towards users needing to run CPE on a single machine. There may be

times when this arrangement is impractical such as:

• When an analyst wishes to use multiple virtual machines (VMs) that require individual

license issue on demand.

• When a team using multiple machines not at the same time.

For this and other similar situations, CPE offers a floating license mode that transfers licensure to a

server application, allowing individual clients on the same network as the application to request a

license on an ad hoc basis. This server application, known as the floating license manager, has a

certain number of licenses assigned to (such as 50) and it the server operates completely

independent of any external links (e.g. the internet). Users on the same network as this server can

now reserve licenses when they are running CPE, and then release them when they have closed the

application.

Any instance of CPE, whether traditional or command-line, will automatically check for a local license

file at startup. If this file is not found, CPE will:

1. Generate a hardware UID and prompt the user to obtain a license.

-or

2. If the CPE instance is confligured to point to the floating license manager, it will

automatically attempt contanct in order to obtain a floating license.

If CPE is able to obtain the license, the program works normally. Note that the client will continually

query (every few seconds) the floating license manager to check that its license is still valid and has

not been revoked by the FLM operator. This means that clients utilizing floating licenses need to

have a reliable, always-on network connection to the running FLM.

Step by step: Running a client instance using a floating license

This example assumes that you have an FLM instance installed, with its own dedicated license file

(license_ILM.dat) present. Start the FLM, and a window such as this should appear:

Page 124 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

This shows that in this case we have a batch of 10 PE-Premium licenses available to allocate, and two

of them have already been reserved. By convention, the FLM uses port 32000 to listen for incoming

license requests.

Now go to the desired client instance and add a new file to \Config, called Licensing.ini . Its text

content should be:

In this example, the FLM and the desired client are running on the same machine, so the FLM config

will point to the same machine (hence 127.0.0.1) for the address; if the FLM is running on a different

machine then that machine’s IP address must be entered here.

You will also need to provide a unique instance name, this can be accomplished by setting this on

the file \Config\CPE.ini, like this:

Make sure that there is no local license file present (ie. license.dat file) and start up Command.exe or

CommandCLI.exe . The client should start up normally, and you will notice a new license reservation

appear on the FLM grid:

Page 125 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The grid shows a number of information that llaows the operator to identify the CPE instances by

both name and machine name and IP address, as well as process ID (since multiple instances of CPE

may run on the same machine, using the same instance name if so configured, this is necessary in

order to differentiate them).

As the client proceeds with whatever task it is assigned, in the background it regularly polls the FLM

to check that its reservation is still valid.

Let us now see what happens when we revoke the allocated license. From the CPE instance’s

information, identify the relevant allocated license. Select its line in the grid, and click on the button

“Revoke Selected”.

The selected license should be removed from the FLM’s visual grid (and its internal database). After

a few seconds, the associated CPE client instance will halt execution and report that it can no longer

confirm that its license is valid, and will exit. The precise way that this is reported varies between the

full-GUI client and the CLI edition; below is an example from the GUI version:

Page 126 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

APPENDICES

Appendix 1: Sensor model factors (except sonar)
The following factors are currently taken into account when evaluating sensor detections in the

Command-PE simulation:

Radar/OECM model

● Radio Line of Sight (separate checks for horizon, straight-line, OTH-surface wave and OTH-

backscatter)

● Specific periscope-search capability (only a few sets have this)

● LDSD limitations (separate full- and limited-LDSD e.g. AWG-10, Saphir-23/25)

● Elevation/lookdown angle

● Horizontal & vertical beamwidth

● Power output (peak)

● Pulse width

● Processing gain

● System noise level

● Operating frequency

● Pulse-repetition frequency (PRF)

● Gain & “effective” power bonuses for PESA & especially AESA antennas

● Target RCS (dependent on aspect and frequency band)

● GMTI only: target speed (fast targets show up more)

● Land targets only: Bonus for high-frequency radars (e.g. MMW)

● Presence and geometry of jamming sources

● Tech generation comparison vs. jamming sources (abstracts ECCM techniques)

● Terrain & sea clutter (slope-dependent for land)

● Weather (rain → propagation loss)

ESM/RWR model

● Radio Line of Sight (separate checks for horizon, straight-line, OTH-surface wave and OTH-

backscatter)

● Frequency band compatible match with target emitter

● Elevation/lookdown angle

● Emitter horizontal & vertical beamwidth

● Emitter power output (peak)

● Emitter pulse width

● Receiver processing gain

● Receiver system noise level

● Emitter LPI design

● AESA emitters get significantly reduced “effective” detected power level (simulates spread-

spectrum, power management and other LPI techniques)

● Weather (rain → propagation loss)

Page 127 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Infrared model

● Visual Line of Sight (incl. cloud blockage)

● Specific periscope-search capability

● Target IR signature (aspect-dependent, various modifiers for afterburner, rocket boost phase,

supersonic/hypersonic etc., distinct values for detection & classification)

● Sensor zoom levels (distinct values for detection, tracking & classification - e.g. narrow-FOV

“soda straw” sensors like EO/IR turrets may track & classify at very long range but actually

detect at very short)

● Weather (clouds, fog, rain → high absorption)

● Time of day (--> ambient temperature)

Visual model

● Visual Line of Sight (incl. cloud blockage)

● Contrails (atmospheric targets), wakes (sea surface), dust & motion (ground vehicles) - can

detect at far greater distances than actual target object under suitable conditions

● Target visual signature (aspect-dependent, various modifiers for afterburner, rocket boost

phase, supersonic/hypersonic etc., distinct values for detection & classification)

● Sensor zoom levels (distinct values for detection, tracking & classification - e.g. narrow-FOV

“soda straw” sensors like EO/IR turrets may track & classify at very long range but actually

detect at very short)

● Weather (clouds, fog, rain → sharp reduction)

● Time of day (--> ambient light)

Laser model

● Visual Line of Sight (incl. cloud blockage)

● Weather (clouds, fog, rain → sharp reduction)

Page 128 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Appendix 2: The sonar model in Command PE

Contrary to the radar/ECM/ESM model, Command-PE’s default sonar model does not start from the

bare physics/EM formulas to work its way up; instead, it uses an “effects-based” model that adjusts

itself to publicly available information on both figures and factors. This allows incorporating new

information and additional factors much easier than when a physics-based model is used.

The factors that affect a platform’s detectability to a sonar sensor include:

Active sonar

● Underwater Line of Sight

● Sensor platform own powerplant & propeller noise (adjusted for throttle). Propeller noise adjusted

depending on type (e.g. shroud).

● Sensor platform own flow noise (adjusted for current speed)

● External towed sensors (VDS, towed array etc.) get significant own-noise reductions

● Explicit sensor depth if different from platform depth (e.g. towed array, VDS, dipping sonar)

● Target echo signature (aspect-, frequency- and platform-dependent)

● Effects of surface ducting (<-- affected by weather)

● Effects of thermal layer

● Effects of deep sound channel

● Effects of reverberation

● Effects of bottom clutter (if target is close to bottom)

● Limits of direct-path propagation

● Bottom-bounce mode (with check for suitable seabed slope)

● Convergence-zone mode (with check for CZ raypath blockage, e.g. by underwater ridge)

Passive sonar & ping-intercept

● Underwater Line of Sight (certain sensors like bottom arrays / SOSUS ignore this)

● Sensor platform own powerplant & propeller noise (adjusted for throttle). Propeller noise adjusted

depending on type (e.g. shroud).

● Sensor platform own flow noise (adjusted for current speed)

● External towed sensors (VDS, towed array etc.) get significant own-noise reductions

● Explicit sensor depth if different from platform depth (e.g. towed array, VDS, dipping sonar)

● Target powerplant & propeller noise (aspect-, frequency- and platform-dependent, adjusted for

throttle). Propeller noise adjusted depending on type (e.g. shroud).

● Target flow noise (adjusted for current speed)

● Effects of surface ducting (<-- affected by weather)

● Effects of thermal layer

● Effects of deep sound channel

● Effects of reverberation

● Limits of direct-path propagation

● Convergence-zone mode (with check for CZ raypath blockage, e.g. by underwater ridge)

The basics

Page 129 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Each naval platform/system in the simulation database has a set of sonar signatures, as in this

example:

The passive sonar figures represent the noise level of the platform (in decibels) at maximum throttle

and maximum through-water speed, at the different acoustic frequency bands. Within the

simulation, the target noise is broken down to powerplant and flow noise (for instance, a submarine

may be starting to drift after a high-speed dash, in this case its flow noise will be high but its

powerplant & propeller noise will be low).

The target noise signatures are compared against "reference maximums", e.g. for submarines the

reference maximum is a November-class submarine at flank throttle. For each unit, four discrete

acoustic bands are considered: VLF (100Hz reference frequency), LF (3kHz), MF (7.5kHz) and HF

(15kHz).

(Note: At frequencies greater than 200 Hz the Source Level falls by 6 dB when the frequency is

doubled. This is reflected by the units' passive sonar signature. For example, a sub with a sonar

signature of 140dB at 1-200Hz, has a signature of 110dB at 3kHz, 102dB at 7.5kHz, and 94dB at

15kHz)

For sonar sensors, the critical values used by the default model are the maximum detection range

(this is the “everything perfect” nominal range against the reference-loudest targets), the

search/track frequency bands, and the VDS/TASS properties if applicable:

Page 130 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The other fields such as source level, pulse length, active recognition difference, directivity index etc.

are not currently used by the default model, but can be populated for use by a different model

through overrides.

Unless the sensor is a sonobuoy or dipping sonar, its own mounted-platform noise must also be

considered. As with the target noise, this is also broken down into flow and powerplant/propeller

components and evaluated for self-noise. Outboard sensors (e.g. VDS or towed array) get a

significant relief from this, as they are severely less affected.

Line-of-sight is necessary in order to achieve detection, with separate check for blockage from

landmass (for example, SOSUS arrays can hear beyond the sonar "horizon" but are still blocked by

i.e. an island or peninsula).

Other fundamental factors include:

• Target aspect (critical for active sonar but also makes a difference for passive)

• Target and sensor-parent cavitation (boosts noise)

• Target submarine snorkelling (again increases noise)

• Sensor arc restrictions (e.g. hull sonar baffles)

• Onboard/offboard nature of sensor (offboard sensors get significant own-noise reductions)

These are the “hunter and target in a perfect day” bare basics. But in real life, and in Command PE,

the environment almost always gets a vote.

Surface ducting and thermocline

Command’s sonar model assumes a “hard” limit of 20K yards / 9.5nm for direct-path propagation.

The marine environment can modify this limit, however, by boosting or degrading an acoustic signal

depending on circumstances.

Surface ducting can extend the direct-path range up to 1.5x the nominal value, in a perfectly calm

sea (state 0). As the sea state increases, the ducting ability is rapidly curtailed.

The thermocline layer is one of the most critical environmental factors. Information on the local

thermocline conditions is always displayed on the map-cursor databox, as in this example:

Page 131 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The “Layer: XX ft to YY ft” text describes the floor and ceiling of the thermocline in the area of the

cursor; these are automatically calculated by local bottom depth and latitude. The “Strength” value

indicates the effectiveness of the thermocline in absorbing sound energy, thus degrading a signal

passing through. Note that the layer ceiling and bottom, as well as its "thickness" (and hence

absorption rate) are not fixed, but vary according to latitude, local depth and local temperature (the

estimated actual values are shown on the map cursor). Trying to manually keep a submarine at the

edges of the layer as these values shift can be a very tedious job, hence the depth presets (F2

window) which automate this.

Following is a brief summary of how the different depth ranges (reflected on the depth-presets on

the unit throttle/altitude window) are modelled in Command, and the tactical implications of each.

In the graphic, towed arrays and/or VDS systems are represented by the red tails on each platform:

Periscope depth: This is the only depth at which subs can use their above-water sensors (periscope,

ESM, radar etc.). A strong surface duct is usually present, which magnifies the transmission range of

noise well beyond nominal (in fact, in calm seas a surface ship can use this duct to get early warning

of threats that are visually/electronically stealthy but acoustically very noisy, such as small high-

speed boats). Bad weather significantly degrades this duct's effect. All sub-launched missiles can be

launched at this depth. Because of the small water pressure cavitation sets in even at relatively low

throttle settings. This is the optimum depth for detection against surface ships (and counter-

detection by hull sonars on surface ships, as well as "shallow"-set sonobuoys and dipping sonars).

Shallow: Some (but not all) sub-launched missiles can be launched at this depth. The surface duct is

still present but significantly weaker. This depth is suitable for keeping an eye (or ear, as it goes) on

surface traffic and staying near (or at) missile-launch conditions while keeping out of the strong

Page 132 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

surface duct (reduce counter-detection by air/surface) and keeping close to the layer below for a

quick dive if necessary (ditto).

Just above layer: Completely out of the surface duct, this depth reduces interaction with air/surface

matters even more, at the benefit of ASW. Indeed, this is the ideal hunting ground for ASW-oriented

subs with towed arrays. This is because subs at this depth automatically trail their arrays _below_

the layer; thus they maximize their detection range against anything below while masking

themselves with the layer (and retaining their above-layer search ability with their hull sonars).

Cavitation speed is significantly higher here. No missiles can be used at this depth or below.

In-layer: Similar to above, the towed array hangs below the layer but the counter-detection

reduction is not as great (sound has to go through a lot less to reach an enemy sensor). Also the

unpredictable mix-up of warm and cold water at this depth range significantly reduces detection

ranges against other subs also in the layer (think Mutara Nebula from Star Trek II).

Just under layer - the Deep Sound Channel: This is by far the most transmission-friendly depth band,

greatly magnifying detection ranges. Surface ships and subs just above the layer both trail their VDS

or towed arrays in this band. Sonobuoys and dipping sonars in "deep" setting also operate here. As a

result, this is the worst place to be if you are hunted by modern ASW forces (or conversely, the best

place to be if you want to attract attention). As a consolation, cavitation speed rises even higher.

ASW-tasked subs without towed arrays often loiter in this band to maximize the range of their hull

sonars. Surface and shallow sonars as well as "shallow"-set sonobuoys and dipping sonars have their

ranges drastically cut against under-layer targets, and in some cases may not be able to get through

at all.

The Great Deep: The DSC still has some influence here but not as great. Cavitation sets in only if you

go flat-out (modern subs do not cavitate at all here, even at flank). If the sea bottom is shallower

than the sub's rated depth, the sub can "fly nap of the earth" or even go belly-up (sit on the bottom)

and get the benefit of greatly reduced active sonar echo. This is generally the ideal depth for

"transit" mode, when the emphasis is on moving from A to B rather than hunting, or for stationary

ambush.

Convergence zones

Convergence zone (CZ) detections are possible only if the local depth provides at least 600ft/200m
clearance under the target. The local conditions for the presence (or not) of CZs are displayed on the
map-cursor databox:

CZ intervals range from 40nm in the poles to 20nm in the equator, depending also on local
temperature.

Page 133 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

An arbitrary number of CZs are supported, if the sound is powerful enough and the receiver sensitive
enough.

The CZ area depth (i.e., ring “thickness”) is assumed to always be 5nm regardless of range, so the
actual detection range at each CZ interval may be plus/minus 2.5nm.

When the “Underwater sensors” map setting is enabled, if we select a unit that can make CZ
detections (i.e., has suitably long-ranged sonar and is in deep enough water), the possible CZ rings for
this unit are displayed on the map, as in this example:

To verify if CZs can indeed form between the sensor and target, the simulation checks not only their
respective local depths but also the depths at the nadirs of each CZ curve; so for example the sensor
and the target may both have an abyss below them but if an underwater ridge high enough is between
them it may well block the CZ path.

Sonar operators are assumed to be proficient enough to discriminate between a direct-path contact
and a CZ one (by examining both aural tones and the bearing rate); as a result, the generated AOU will
either start from the sensor platform and extend to max direct-path range, or (in the case of a CZ
detection) start from the innermost CZ interval and extend to max sensor range. This is an example of
a CZ detection as displayed:

Page 134 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Reverb, ambient noise & other factors

Noise propagation is also affected by reverberation and ambient noise. This is most evident in

shallow environments, where there are more opportunities for sound waves to reflect and bend in

unpredictable ways. Reverb affects more the lower-band frequencies (MF and especially HF sonars

are more resistant). Ice environments also increase the background noise, making under-ice

detections more difficult.

Sonar detections may be affected by target masking. When the sub/ship being detected is within X

degrees bearing (relative to the sonar sensor) of another one, the (comparatively) louder one may

prevent the other(s) from being detected.

(X = a given angular difference referred to as the “bearing gate”. This value decreases in more

modern sonar sets (as low as 4 degrees) and increases in older ones (as high as 20 deg). To fool a

modern passive sonar by masking under another vessel on the same bearing, you need to get very

close to the other unit angularly).

A potential way to get around the degradation of sound signal through the thermocline, is to use

bottom bounce. This is used automatically by a sonar platform if suitable conditions (proper hunter-

target vertical geometry, sufficiently flat sea bottom etc.) are met:

Page 135 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Bottom bounce offers up to a 20% increase in detection range over nominal direct-path under

identical conditions. This will vary according to a number of factors such as the actual bottom slope

(a rougher bottom will decrease the benefit).

Technological generation is one of the most crucial factors in a sonar sensor’s ability to compensate

for degradation from environmental and other factors. A given sonar may have a very high nominal

range, but if its tech generation is declared as antiquated, the practical detection range may be

severely degraded from the effects of reverberation, ambient noise, masking and other factors.

A practical example

Let us consider a simple example, to illustrate some of the fundamentals of the sonar model.

 A Burke-class (Flt IIA - 2015) DDG attempts to passively detect a Type 093 Shang-class submarine

(2007) at relatively deep water (686m bottom depth), using its hull SQS-53C(V)1 sonar. The Burke is

coming off a sprint and drifting, current speed is 20 knots and falling, throttle is set to creep (5

knots). The Shang is steady at 10 knots, just under the layer (175m depth). The Burke is trailing the

Shang at 8.48nm. Local conditions are: Heavy rain, sea state 4, 53%-strong thermal layer between

98-167m, CZs forming at 27-54-81-108nm.

* The sonar bow has LOS to the sub.

* The Burke is drifting with throttle to creep or less, so powerplant noise modifier is essentially

minimum and flow noise modifier is 0.45. The total "own noise" modifier is 0.88.

* The Shang has a baseline LF rear-aspect sound signature of 82 vs the reference maximum of 112

(The acoustic signature values are in decibels). The powerplant noise modifier is 0.5 and the flow

noise modifier is 0.3, for a total noise modifier of 0.458. The sub is not cavitating. Its "actual" (vs.

nominal) sound signature is 0.73

* Taking all the above numbers into account, the sonar's actual detection range is 40nm (max

theoretical) * 0.88 (own noise) * 0.458 (target noise) * 0.73 (target noise ratio) = 11.88nm.

* Now we go into propagation and reverb modifiers. No surface ducting in this case (target is too

deep), and the thermal layer sharply reduces the detection range by 0.47. No modifiers for shallow

water or under-ice here, so the actual feasible detection range is now just 5.63nm. Actual direct-

path detection range is 4.68 (nominal 9.5nm affected by the same propagation and reverb

modifiers). This is much lower than the 8.48nm distance, so the SQS-53(V)1 sonar does not detect

the Shang under these conditions.

Page 136 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Let us check if the destroyer's SQR-20 MFTA towed array fares better (it should, it hangs below the

layer and the sub is right in the deep sound channel area): Same own- and target-noise modifiers

and base signatures as above. Theoretical max range: 70nm. Practical range after noise modifiers:

~22nm. Not only is the array not degraded by the thermal layer, but the DSC actually grants it a 2x

bonus. So detection range jumps to a whopping ~45nm. Direct-path range is similarly boosted by the

DSC, and the array has no problem picking up the Shang.

One way to make life quite hard for the DDG would be to place both boats on shallow water. No

towed array capability there, and the reverb would sharply cut down practical detection ranges for

the LF bow sonar (plus, the sub would be able to hide itself against active pinging by hugging the

bottom).

Bring your own model: Mechanics Overrides

The sonar model is extensible and replaceable through the "Mechanics Overrides" feature (see

relevant section on this manual). The database sensor annex already includes several fields for

properties not used by the default model but used by other popular models such as Odin or Kraken.

Customers interested in extending or replacing the default sonar model should contact the

Command-PE development team to discuss the most beneficial modification for their needs.

Page 137 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Appendix 3: The Amphibious Planner, Operation Planner and Serial Editor

While this feature uses known military concepts, in practice some terminologies may have a slightly

different meanings within the Command simulation, to fit gameplay & analysis requirements, and

accommodate with the current state of the simulation.

To fully comprehend this extension, it is essential to have a good knowledge of the mission editor in

general, and cargo missions in particular.

SUMMARY
• Getting Started

• An amphibious operation from start to end

• Creating zones

• Creating Serials and Chalks

• Creating your landing plan

• Understanding the concept of multi-mission units

• Operation Planner

• Triggers

• Logical Operators

• Lua scripting

• Working with estimation

• Lua Reference

• Import/Export

• Nomenclature

Getting started

You can find the Landing planner, the Serial Editor, and the Operation Planner under the Missions +

Ref. Points -> Operation Manager menu.

Page 138 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

An amphibious operation from start to finish

The best way to learn the functionalities of this extension is to play with an actual test case.

You can find a scenario called “Quickstart Landing Planner” in the “[Program

data]\Scenarios\Tutorials\Other tutorials” folder. This is a prebuilt scenario with an existing landing

force.

Open this scenario to get started. We will follow a procedure to create a full landing operation and

invade the Isle of Man!

Creating zones

The operation planer comes with a new feature allowing you to create stand-alone zones. The first

thing to do is to layout your invasion strategy by designating zones. These zones in the future will

either be set as LZ (Airborne Landing Zone) or CLZ (Amphibious landing zone.)

Create a landing zone along the shore for your CLZ (a CLZ should containing both water and land)

and a zone inland for your LZ.

Page 139 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Zones are defined by three or more reference points. To create a new zone, go to the Missions +

Ref. Points -> Define Area menu item and place your reference points.

Go to Missions + Ref. Points -> Reference Points Manager

Now select a group of reference points to create your zone from. As shown in the screenshot below,

click on “Add points currently highlighted on map” and then rename your zone to something

specific and select a new color.

Page 140 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

You have now defined a new zone. Create as many zones as needed.

Creating Serials and Chalks

A serial defines a group of existing units from a common mothership that will be landed together

using a cargo mission. Serials allow you to organize your landing manifest while generating your

landing plan through the landing planner. Serials can only be modified, created, or removed from

the serials editor. They are not used in the rest of the simulation, outside of the landing planner. A

chalk is similar to a serial but is used for an airborne landing instead of a seaborne one. Therefore,

the terms serial and chalk are conceptually identical in the Command simulation, and, for clarity, the

term “serial” will refer to both in this manual.

Go to Missions + Ref. Points -> Operation Manager -> Serial/Chalk Editor

Page 141 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

In this scenario we have a fleet of 2 LHA 1 Tarawa, these are amphibious assault ships transporting

troops and cargo, landing crafts and aircrafts. In this manual we will call them “Mothership”.

The first thing to do is to select a mothership - a “Host”.

Select one of the LHA.

On the left, you can see all the serials on this mothership. We currently have no serial.

Click on the “+” button to add one.

Serials ID start at 0 and increment by 5 each time you add one. This is for organizational purpose, in

case you‘d like to add serials in-between existing serials. A serial’s ID is used to reference that serial

in the landing planner but has no other significance.

In the “Eligible transports” panel you will see the full list of landing crafts. The percentage at the end

is how much (max value of area/weight/pax) the current serial is taking. 375% means that it will

theoretically take 4 waves to deliver this serial with the given transport.

Sometimes a transport will be unable to transport a given serial. When this occurs, the transport will

be shown in red, and the serial editor will report why the transport is impossible.

The “Information” panel displays the details of the current serial. It records the total weight, area

and pax count and the largest cargo type in the serial.

The “Assets in serial” panel displays all of the individual units loaded in the mothership. Each line

represents a unit type.

To allocate 1 unit to the current serial, click the corresponding button in the “QTY Allocated”

column.

To remove 1 unit from the current serial, click the corresponding button in the “QTY (Mothership)”

column.

In the example below we have allocated to the current serial:

• 2 AAV-P7

• 1 Towed Howitzer (155mm)

• 2 Mortar (81mm)

Note the “[4/6]” value for the 155 Howitzer under “QTY (Mothership)” -- this means that a total of 6

howitzers are aboard the mothership, with 4 out of 6 howitzers allocated across all serials, leaving 2

howitzers not yet allocated to a serial.

Page 142 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Create as many serials as needed and populate them with units.

Try to make efficient serial depending on how you’d like to land the units. Keep an eye out for serials

that can’t be transported at all.

Creating your landing plan

You have your zones.

You have serials.

Now it is time to generate your actual landing plan.

Go to Missions + Ref. Points -> Operation Manager -> Landing Planner

Choose the mothership for this landing plan. A mothership will have a single landing plan.

Page 143 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Then prepare your zones and assign them a type.

Designate your amphibious landing zone as

“CLZ” and your airborne landing zones as “LZ”.

To designate a zone type, select the zone in the

zone list, select the type in the drop down list of

types, and then click the “Select LZ Type” button.

Once the zones have been designated for your landing plan,

assign the transport you wish to allocate.

To allocate a transport, click on the transport unit and then

click the “Assign to Landing” button. To unallocate a transport,

click the transport and then click “Unassign to Landing.”

Allocating a transport allows the landing planner to consider

using that transport when you generate a landing plan. It does

not guarantee the transport will be used for the landing.

As a rule of thumb, assign as many transports as possible if you

want to deliver your units as fast as possible, in a minimal numbers of waves. But the landing

planner leaves you the possibility to keep some reserve units.

The units Assignment panel lists all your serials, with their contained units. Each line represents a

unit within a serial.

Priority

The priority column is where you decide which serial should be transported first. The highest priority

is 0, and the lowest is 9. The landing planner generator will take this into account during

computation.

Landing Zone

Each serial has a designated landing zone. You decide here where the serial should be delivered.

Transport types

Page 144 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The remaining columns are populated with the different types of transports allocated to the landing

plan. Note these are transport types, not individual transport units.

You can designate which transport type(s) can be used to transport any given unit in a serial. Allowing

multiple transport type usually allows the landing planner to generate a more efficient landing plan.

Designate a landing zone for each serial, and optionally, tweak the priority and the allowed transport

type on the right columns.

When you are happy with the configuration, click on “Generate Landing Plan”.

 A draft of the landing plan will be generated but not confirmed. At this point you can still make

changes and click “Generate Landing Plan” again to draft a new plan.

The landing planner did all the heavy thinking and optimized the manifests as much as possible,

taking priority into account.

The landing planner will also warn you of errors. Look at the landing plan above and note that the

“Current Transport” has been marked as “Impossible” where we have a serial with trucks assigned to

our Ospreys and CH-53C.

Since serial #5 would be better transported aboard an LCU or an LCAC, change the landing zone to

“Shore B (CLZ)” and click on “Generate Landing Plan” again.

Page 145 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The result is now a viable landing plan.

We also have our transport manifests generated now. Click on an individual transport and then

select a wave to see the detailed manifest for this specific transport and wave.

Do a final check of your landing plan and try to find anything that looks incorrect.

Once you are satisfied with the plan, click on the “Confirm Landing Plan” button.

Pre-Boating special case

The landing planner support special cases when the user decides to load the landing craft prior to the

landing operation. These chalks will appear as “pre-boated”. It is necessary to assign them a landing

zone, and for obvious reason, the first wave will be dedicated for the pre-boated chalk units.

Page 146 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

A pop-up will open listing all the generated cargo missions.

Each wave is a Command cargo mission.

3 Options are available in this panel:

Instant loading for all first wave?

This editor-only option will make sure that the first wave of

every transport is instantaneously embarked. This is used to

quickly simulate pre-boating.

Immediately start the landing

The whole landing plan will execute immediately.

Associate Landing plan to operation L-Hour

Automatically creates a Master Landing Plan that will act as

the L-Hour initial mission in the operation. Meaning that

this landing plan will start at the defined L-Hour date and

time.

Allowing instant loading for regular player

If you want to allow regular player (non-editor users) to be able to select the immediate landing at

first wave feature, you can change this setting in Editor>Scenario Features + Setting.

Enable Allow instant loading for landing planner, click on OK and make sure to save the scenario.

Any player using this scenario will be able to load instantaneously the cargo for the first wave.

Page 147 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Once you are satisfied with the 3 options, click on “OK”, the landing plan will be generated and

added to the operation planner.

Go to Missions + Ref. Points -> Operation Manager -> Operation Planner

The Operation Planner lists all the missions of your side. We can see the generated cargo missions

from the landing planner. Thankfully the landing planner takes care of all triggers, lua scripts, mission

dependencies, multi-mission assignments, phase selections, priorities, etc. We now have a functional

landing operation.

Landing operation in progress.

Self-transportation and amphibious vehicles

Page 148 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The landing planner allows to set eligible units to transport themselves. The only eligible units at the

moment are ground units with amphibious capabilities.

Amphibious vehicles not counted as transports; we consider them as part of the serial.

The “self” transport option mean that the unit will uses its own means to go to the landing zone. This

option has priority, it will therefore ignore all other option if the “self” option is checked.

In order to enable this option, the serial must contain exclusively amphibious vehicles. If you have a

serial with 9 amphibious vehicles and 1 non-amphibious unit, none of these units will have the “self”

option activated.

To see this in action, please open the Quickstart Amphibious vehicles and Active Units scenario

provided with this manual.

Before moving on operation planner, it is essential to understand a new core feature: Multi-

missioned units.

Understanding dynamic units (aka multi-missioned units)

Previously, in Command, a given unit could only be assigned to a single mission. If you wanted to

assign the unit to another mission, you would have to manually unassign it from the current mission

and then assign it to a new one.

This extension adds the possibility for a single unit to be assigned to multiple missions. Of course,

the unit can only execute one mission at a time, but you can now prioritize which mission it should

execute. Mission priority is set via the operation planner.

Let’s assume we have a scenario where a group of aircrafts is assigned to a patrol mission. These

aircrafts should patrol an area from a given time and then start a strike mission against a group of

tanks. Without the operation planner, the player would need to track the time and then manually

switch each aircraft to a new mission, at the right moment. Thanks to the operation planner such

behavior can be automated, and in more complex environment, our units could even behave like a

reactive AI, aware of the simulation at the strategical level.

IMPORTANT ! A unit without “Dynamic” Checked will be ignored by the operation planner dynamic

assignment, if you want a unit to work with operation planner’s feature you MUST designate it as a

dynamic unit.

Page 149 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Open the scenario called “Quickstart Operation Planner”.

Open the mission editor.

Select “Air Superiority Patrol” mission in the list and make sure both filters are set to “Showing

Multi-Mission”.

Select one of the Rafale in flight 18.

Notice that since we have toggle “Showing Multi-Mission” we are now allowed to assign multiple

mission to a unit, they are still shown in the “Available units” list despite having an assigned mission.

This panel on the right side of the mission editor shows all missions

assigned to this unit. The mission in green in the one currently executed

by the unit. Missions don’t have an order of execution, but a priority,

which is set in the operation planner, as we will see later.

The “Dynamic” checkbox allows the unit to be assigned to multiple

missions, units are all unchecked by default to reflect default command

behavior.

Below the mission list we can

see the current status and

phase of the mission. We will

see later in the operation

planner chapter as “Phase” is a new way of managing the mission

dynamically and is closely related to multi-mission.

It is on this screen that you decide to add the unit to all of the missions you want it assigned to. At

this point you don’t have worry about priority or to select a current mission as the operation planner

will manage this for you.

In above’s example we see that Rafale B is assigned to both the “Air Superiority Patrol” and “Light

Tanks Destruction” missions, and the active mission for this unit is the one in green: “Air Superiority

Page 150 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Patrol.” Depending on the configuration of the operation planer, this unit may automatically switch

to the “Light Tanks Destruction” mission at some point in the future.

Don’t worry if the multi-mission mechanism is not entirely clear to you yet, as the mission editor is

only half the story. The next chapter on operation planner will explain the other half.

Mobile facility vs Ground unit

One of the most significant change brought by the operation planner, is the possibility to have units

dynamically change mission. Not all types of units are eligible for this kind of behavior.

From a minimalist ground unit implementation, Command then introduced fully simulated ground

units.

It is important to understand the core difference between:

• Ground units as facility which is a legacy implementation where ground unit are assimilated

as moving “facility”

• Mobile facilities, a new implementation, which works like others active units such as

aircraft, ships etc…

The first hold a group of units abstractly represented as “mounts”, while the last is a fully simulated

individual unit.

The core difference that interests us here is that ground units as facility are transported as cargo

which doesn’t have an existence in the simulation until it has landed (and spawned).

This means that we can’t assign or queue them a mission until they have landed, and you will not be

able to achieve a fully autonomous behavior for your units, in this case.

Since the 8th November 2021 update we allow cargo operation for active units, meaning that all

these limitation are now removed. However, you must have the right methodology to achieve this.

Unless you have to achieve backward compatibility or if a database entry is missing, you MUST use

ground units NOT mobiles facilities to use the operation planner at its fullest.

Page 151 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Operation Planner

Open the operation planner: Missions + Ref. Points -> Operation Manager -> Landing Planner

Creating a landing plan gave you a quick introduction to the operation planner. But it can be used

beyond landing operations – it is a complex and general-purpose framework that works alongside

many of the new features in Command.

The operation planner adds a new level of interaction between missions and allows units to be
dynamically reassigned from one mission to another.

Since the operation planner is sometimes tied to a landing plan, we have here the concepts of H-
Hour and L-Hour to indicate overall operational time. These can be of course be ignored, or used in a
different purpose.

On the top left, can be defined the H-Hour and the L-Hour.

The H-Hour box on the left is where we can define the date and time to start the H-Hour mission.
The H-Hour mission is the initial mission in the operation. L-Hour box works identically to H-Hour but
they are independent.

Once an H-Hour or L-Hour is hit the respective initial mission can no longer be changed.

The checkbox in the middle ties the H-Hour to the L-Hour, meaning that the time separation will be
constant between H-Hour and L-Hour when you modify the time for either.

The spreadsheet in the center lists all the side’s missions. Most columns are informational.
Generally, you will be dealing with 2 columns: Priority and Phase.

Page 152 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Mission priority

The priority of a mission does NOT designate his supposed position in a mission execution queue. It
indicates to its assigned units how important this mission is at this moment. The mission priority is
used by units assigned to multiple missions to decide which mission to execute at any given time.
A unit having a mission in “On Hold” phase will not have this mission evaluated for the active mission
evaluation.

Mission phases

A mission phase is a new concept introduced with the operation planner extension, it is not related

to the mission status and should not be mistaken with it.

Waiting for trigger: The mission may (or may not) have already started yet but queued units won’t

evaluate this mission when choosing one to be assigned to.

Satisfied: The mission is considered to have achieved enough of its objective for its current assigned

dynamic units to consider other missions, but a satisfied mission does not mean its ending. This tag

is used for mission triggers and for multi-mission priority.

Triggered: A running mission will become a valid candidate for multi-mission units assigned to it.

Therefore, a queued unit to this mission may become assigned to it.

A unit assigned to multiple missions will pick the most appropriate mission to be assigned to, based
on the priority and the phase of the mission. unless it is already active on a mission that is in
“running” phase, or if all assigned missions are in “On Hold” phase.
A unit that is active in a mission in “Satisfied” phase will still evaluate the satisfied mission and may
continue that mission if no other missions are available.

Name

Just like for operation, the mission’s name helps for organization. However, user’s made Lua scripts
might reference a mission by its name and it is recommended to be careful when changing mission’s
name in such situation.

Description

Page 153 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

This is purely an informational tag and does not affect the simulation at the moment. Use and edit
this field to organize yourself.
Generated mission will usually contain some generated information.

Type

This is the mission sub type as defined in Command’s simulation.

Execution Time

The time, relative to H-Hour at which the mission is estimated to begin. See the chapter “Working
with estimation” for more details.

Bulk actions

Bulk action tools are located on the bottom of the operation planner. These are used to select
multiple mission at once and perform simultaneous modifications on them.

Filter

The filter tool is used to do a specific term research on mission and filter the result of this search
query.

Triggers

This chapter is the core of the operation planner and landing planner capabilities. It allows

relationships between mission and a dynamic approach when executing missions.

A trigger is like a set of a condition and an action, if the condition is met, then we do an action.

Command evaluates all these triggers every second.

For mission, there are 2 types of actions:

• We start a mission (we set the mission’s phase as “Running”).

• We finish a mission (we set the mission’s phase as “Satisfied”).

It is important to understand that Command doesn’t have a concept of mission completion, when

tagging a mission as satisfied, command only indicates that the mission have enough fulfilled its

objective to allow its assigned units to evaluate other mission assignment options. Of course all

relevant missions have already implicit mission completion mechanisms, a cargo mission will stop

operation once the task is done, a strike mission won’t launch again to strike a nonexistent targets,

etc…

Page 154 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

These 2 actions are tied to a set of conditions.

Starting a mission with triggers

Select any of the mission and look on the right

side of the operation planner window. Notice

the main block called “Triggers to Start

Mission”, and how it is separated into 3

smaller blocks.

These smaller blocks are individual conditions.

Checking them means this specific condition

will be evaluated.

The dropdown on the right of each smaller

block is called a conditional operator.

As you can see there are 3 types of triggers

that can start a mission:

• A time based trigger

• A mission dependency trigger

• A Lua script trigger

Time-based trigger

This will be triggered when the scenario date reaches the
defined H-Hour plus or minus a given duration.

Exemple #1: This trigger will be true if we reach H+ 2
hours

Exemple #2: This trigger will be true if we reach H- 23
hours

Mission dependency trigger

This will be triggered if all missions in
“missions to check” are in “Satisfied” phase.

In this example, it will be triggered when “Air
Superiority Patrol” mission is in “Satisfied”
Phase.

Page 155 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Lua script trigger

This will be triggered if the Lua script contained returns
TRUE as a value. See the “Lua scripting” chapter for more
information.

“Finishing” a mission with triggers

It was mentioned earlier that Command does not have
an explicit concept of finished mission.
The triggers to tag a mission as “satisfied” work just like
the one to start it.

The first trigger is a time based one, it tracks the
elapsed time since the mission’s phase has been set to
“Running” and will be true once the defined time
elapsed.

The second one is a Lua script trigger and work identically to the one in the mission start trigger – it
returns the Boolean value of the contained lua script.

Logical Operators

Triggers, in Command, are tied with logical operators.

Take a look at the picture on the right, representing a

set of triggers to start a mission:

We have set all 3 triggers to be checked. On the right

of each triggers you can notice a dropdown when you

can selected either the OR or AND operator.

For the triggers to return TRUE and therefore start the

mission (set its phase to “Running”) each checked

trigger is evaluated.

We see in this example that the first trigger has “OR”

operator, the second “AND,” the third “OR.”

What it means in this situation is that the second

trigger (the one with “AND”) must be true.

In addition the “AND” trigger needing to be true, either

of the first or third “OR” triggers must also be true.

If all conditions are met and the current mission’s

phases is “On Hold” then the mission will change it

phase to “Running”.

Page 156 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Another example:

All triggers are checked (and will be

evaluated), and each of them have the

“AND” operator.

This means that the missions will start

when all conditions are true.

Final example:

All triggers have an “OR” operator, meaning

That the mission will start if any of the conditions is

true.

Page 157 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Lua scripting

Command has already a powerful Lua scripting framework. The operation planner allows the

integration of your script as a trigger.

Clicking on “Edit Script” in either the “Triggers to Start Mission” or the “Triggers to Tag Mission as

Satisfied” group will bring you to an interface where you can add your script in.

Just like the rest of the triggers, the Lua Script trigger will be executed each second for its associated

mission. The Lua script must return a Boolean.

Working with estimation

Command is such a complex simulation that giving an accurate estimation of an operation duration

could take up to hours of computation. The operation planner provides an instantaneous estimation

at the price of reliability.

The operation planner estimation takes into account all the time based triggers and mission

dependencies, it simulates a run and then display the estimated execution tie for each mission.

This estimation work only thanks to the user’s input on triggers.

Page 158 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The special case of Lua script

You may have noticed that not all triggers are time-based, some depends on lua script and cannot be

reliably predicted. In this case, you will have to manually input a value into the trigger in this trigger,

shown on the right.

It is not necessary to check (enable) the

trigger, having an unchecked “Time Elapsed”

trigger with a value basically tells the

operation planner: “Only use this trigger when

estimating execution time”. In this example, we assume the mission will be satisfied after 1 hour.

If everything is properly configured, clicking on the “Simulate” button will calculate the execution

time, relative to H-Hour for each mission.

Page 159 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

How to Split/Merge ground units (facilities)

Legacy ground units associated as “facilities” can now be rearranged through this new tool.

Select an eligible unit, such as a
landed detachment, right click on it
to bring the context menu and click
on “Split unit”.

This brings you this menu, with the

details of the detachment.

You can also break the detachment into individual units

with a single click

Page 160 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Two eligible units can be merge together:

Page 161 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Lua Reference

Mission Lua Wrapper

PriorityWeight (Read/Write) [int]

How important this mission is (0 = most important) affects multi-mission units assignment dynamic.

OperationName (Read/Write) [string]

Used to organize mission into groups, it is an informational element shown on the operation planner
UI.

Completion (Read/Write) [float]

From 0.0 to 1.0, it designates how complete this mission is. This value is mostly unused in most cases
at the moment and should be ignored.

Phase (Read/Write) [ENUM]

The phase as interpreted by the operation planner, this rules the whole dynamic in the operation
planner and the assignment of multi-mission units.

MissionPhase ENUM:

None = 999

Auto = 0

Completed = 10

Active = 20

OnHold = 30

MISSION START BY TIME TRIGGER

MissionStartTrigger_Time (Read/Write) [int]

The H +/- time condition for the trigger.

MissionStartTrigger_Time_Enabled (Read/Write) [Bool]

Is the trigger used or not?

MissionStartTrigger_Time_LastResult (Read) [Bool]

What was the last result of the trigger the last time it has been evaluated?

MissionStartTrigger_Time_Operator (Read/Write) [Bool]

The trigger's operator. True = 'AND', False = 'OR'

MISSION START BY MISSION COMPLETED

MissionStartTrigger_MissionCompleted (Read/Write) [NLua.LuaTable]

Page 162 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The condition for the trigger, defined as all the missions that need to be completed (phase as
"satisfied") for the trigger to check.

Exemple :

>> local mission = ScenEdit_GetMission('USA','Shore A LCAC 1 #4 Wave 1')

print(mission.MissionStartTrigger_MissionCompleted)

mission.MissionStartTrigger_MissionCompleted = {"LTACBA-0HMBO9DVSMOPI","LTACBA-
0HMBO9DVSMOP9","LTACBA-0HMBO9DVSMOPB"}

print(mission.MissionStartTrigger_MissionCompleted)

{ [1] = 'LTACBA-0HMBO9DVSMOPI' }

{ [1] = 'LTACBA-0HMBO9DVSMOPI', [2] = 'LTACBA-0HMBO9DVSMOP9', [3] = 'LTACBA-
0HMBO9DVSMOPB' }

MissionStartTrigger_MissionCompleted_Enabled (Read/Write) [Bool]

Is the trigger used or not?

MissionStartTrigger_MissionCompleted_LastResult (Read) [Bool]

What was the last result of the trigger the last time it has been evaluated?

MissionStartTrigger_MissionCompleted_Operator (Read/Write) [Bool]

The trigger's operator. True = 'AND', False = 'OR'

MISSION START BY LUA CONDITION

MissionStartTrigger_LUADescription (Read/Write) [String]

The label of the lua script as an indicator of its purpose.

MissionStartTrigger_LUA (Read/Write) [String]

The lua script to be executed for this trigger conditions, must return a boolean as a condition result.

MissionStartTrigger_LUA_Enabled (Read/Write) [Bool]

Is the trigger used or not?

MissionStartTrigger_LUA_LastResult (Read) [Bool]

What was the last result of the trigger the last time it has been evaluated?

MissionStartTrigger_LUA_Operator (Read/Write) [Bool]

The trigger's operator. True = 'AND', False = 'OR'

MISSION COMPLETED ("SATISFIED") BY ELAPSED TIME OF MISSION
EXECUTION

MissionCompletedTrigger_ElapsedTime (Read/Write) [int]

Page 163 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The elapsed time since mission execution for the trigger's condition to return true.

MissionCompletedTrigger_ElapsedTime_Current (Read/Write) [int]

The current elapsed time.

MissionCompletedTrigger_ElapsedTime_Enabled (Read/Write) [Bool]

Is the trigger used or not?

MissionCompletedTrigger_ElapsedTime_LastResult (Read) [Bool]

What was the last result of the trigger the last time it has been evaluated?

MissionCompletedTrigger_ElapsedTime_Operator (Read/Write) [Bool]

The trigger's operator. True = 'AND', False = 'OR'

MISSION COMPLETED ("SATISFIED") BY LUA CONDITION

MissionCompletedTrigger_LUADescription (Read/Write) [String]

The label of the lua script as an indicator of its purpose.

MissionCompletedTrigger_LUA (Read/Write) [String]

The lua script to be executed for this trigger conditions, must return a boolean as a condition result.

MissionCompletedTrigger_LUA_Enabled (Read/Write) [Bool]

Is the trigger used or not?

MissionCompletedTrigger_LUA_LastResult (Read) [Bool]

What was the last result of the trigger the last time it has been evaluated?

MissionCompletedTrigger_LUA_Operator (Read/Write) [Bool]

The trigger's operator. True = 'AND', False = 'OR'

Operation Lua Wrapper

The ‘Operation’ object can be fetched from the side object. There is only one operation object per

side.

LHourMission (Read/Write) [LuaWrapper_Mission]

The mission designated to start at L-Hour. As soon as the L-Hour is reached, the mission will change

phase to “Running”.

HHourMission (Read/Write) [LuaWrapper_Mission]

Page 164 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The mission designated to start at H-Hour. As soon as the H-Hour is reached, the mission will change

phase to “Running”.

HHour (Read/Write) [String]

The time set as H-Hour.

LHour (Read/Write) [String]

The time set as L-Hour.

HHourEffectiveStartTime (Read/Write) [String]

The effective time at which the H-Hour started counting. Sometimes the actual H-Hour can be

different from the one planned initially, or in the past.

LHourEffectiveStartTime (Read/Write) [String]

The effective time at which the L-Hour started counting. Sometimes the actual L-Hour can be

different from the one planned initially, or in the past.

H_LHourAreRelative (Read/Write) [String]

Whether or not the H-Hour and the L-Hour have a static time delta. With this option on TRUE, the H-

hour and L-hour will always have the same time difference and will adjust automatically when

changing either the H-Hour or the L-Hour

Unit Lua Wrapper

AllowMultiMission (Read/Write) [Bool]

Is the mission allowed to have multiple missions assigned to it and will it be considered by the

operation planner logic?

AssignedMissionsQueue (Read/Write) [NLua.LuaTable]

The list of missions assigned to this unit. This is the missions the operation planner evaluate every

tick.

Serial/Chalk Lua Wrapper

Serials/Chalks can be fetched from the side object the name of the collection is “Chalks”.

ID (Read/Write) [Int]

The serial’s visible ID.

AssociatedMothership (Read) [string]

The GUID of the mothership this chalk is associated to.

Page 165 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

LargestCargoType (Read) [CargoType ENUM]

Get the largest cargo this serial currently contains.

Enum CargoType:
NoCargo = 0
Personnel = 1000
SmallCargo = 2000
MediumCargo = 3000
LargeCargo = 4000
VLargeCargo

Mass (Read) [float]

The total mass of the serial.

Area (Read) [float]

The total area taken by the serial.

PAX (Read) [float]

The total personnel this serial contains.

Page 166 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Appendix 4: Complete Sensor Detection Reports

The “Sensor Detection” event type exported by Command PE’s event-export framework, while

providing a lot of useful contextual information on a detection check, does not provide more

detailed feedback on specifically why a detection failed. CPE’s sensor model is comprehensive in its

mirroring of real-life factors that can prevent a detection (everything from line-of-sight blockage to

the detrimental effect of weather conditions, for example), and sometimes it is useful to an analyst

to understand which specific factors are the culprits in a detection failure.

Beginning with v2.2, Command PE can provide a complete sensor detection failure report, if desired.

For each failed sensor detection check, this full report will lists every possible failure condition that

either caused the detection failure, or would have caused a detection failure in the absence of other

conditions. A complete sensor detection report can be can be helpful to validate sensors created in

a custom database or to gain a deeper understanding of your scenarios analysis results.

IMPORTANT NOTE: By default, Command’s sensor detection pipeline is optimized for performance &

scalability, with careful arrangement of the detection steps to enable speed-enhancing shortcuts to

be taken where possible (for example, CPU-inexpensive checks are performed first, so if these fail

then more expensive operations can be skipped). Enabling complete sensor detection reports will

force the simulation to completely ignore such shortcuts and evaluate every possible sensor condition

that could have resulted in a detection failure. This requires additional CPU processing for every

failed sensor detection check, and this is likely to significantly reduce the speed at which the

simulation runs. Therefore, complete sensor failure reports should be carefully managed and enabled

only when you require this additional data.

To enable complete sensor failure reports, add the line “CompleteSensorFailureReports = 1” to the

‘General’ section of the CPE.INI text file in your Command Professional Edition ‘Config’ folder and

restart Command.

To retrieve the data for a complete sensor failure report you must then add a SensorCheckAfter Lua

event hook to your scenario. For information on this hook, please see the manual section on ‘Lua

Event Hooks’ above. The fourth parameter in your SensorCheckAfter Lua hook function will be

passed a table of failure results which can then be parsed, displayed, or written to a file by your Lua

script, as desired.

Each entry in the failure results Lua table will contain a pair of values – the first a numeric value

indicating the relative order the failure cases were evaluated in, and the second a specific reason for

Page 167 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

each failure case. The following script demonstrates one way you might process and report the

failure cases. In this example the results from the failure report is passed to the function ‘tprint’ to

convert them to a human-readable format, then displayed with a message box.

Sensor Detection Results Hierarchy

Complete sensor failure reports will enumerate all possible sources of sensor detection failures

starting with the most general-case failure and then proceeding to more sensor-specific failure

cases, listing all of the failure cases that apply to that detection attempt. The reported results were

evaluated by the simulation in the order given by the first value in each entry in the results Lua table

(enumerated from 0…N) while the corresponding reason for failure can be found in the lists given

below.

A successful sensor detection attempt will report a single Lua table entry with the index ‘0’ and a

GENERAL_SuccessfullDetection_<type> result.

General Failures

 GENERAL_Range = 1
 GENERAL_TargetSuitability = 3
 GENERAL_CoveringArc = 5
 GENERAL_MaxAltitude_AGL = 7
 GENERAL_MinAltitude_AGL = 9
 GENERAL_MaxAltitude_ASL = 11
 GENERAL_MinAltitude_ASL = 13
 GENERAL_Other = 15

Page 168 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

 GENERAL_WeaponESM_UnsuitableTarget_Satellite = 17
 GENERAL_WeaponESM_UnsuitableTarget_AircraftOrWeapon = 19
 GENERAL_WeaponESM_UnsuitableTarget_ShipOrFacility = 21

 GENERAL_SuccessfullDetection_FromOneOfThePCLS = 22
 GENERAL_FailedDetection_FromAllThePCLS = 23

 GENERAL_SuccessfullDetection_IR = 24
 GENERAL_FailedDetection_IR = 25

 GENERAL_SuccessfullDetection_PingIntercept = 26
 GENERAL_FailedDetection_PingIntercept = 27

 GENERAL_SuccessfullDetection_Visual = 28
 GENERAL_FailedDetection_Visual = 29

 GENERAL_SuccessfullDetection_Radar = 30
 GENERAL_FailedDetection_Radar = 31

 GENERAL_SuccessfullDetection_ESM = 32
 GENERAL_FailedDetection_ESM = 33

 GENERAL_SuccessfullDetection_HullandBottomFixed_PassiveSonar = 34
 GENERAL_FailedDetection_HullandBottomFixed_PassiveSonar = 35

 GENERAL_SuccessfullDetection_HullandBottomFixed_ActiveSonar = 36
 GENERAL_FailedDetection_HullandBottomFixed_ActiveSonar = 37

 GENERAL_SuccessfullDetection_DippingAndVDS_PassiveSonar = 38
 GENERAL_FailedDetection_DippingAndVDS_PassiveSonar = 39

 GENERAL_SuccessfullDetection_DippingAndVDS_ActiveSonar = 40
 GENERAL_FailedDetection_DippingAndVDS_ActiveSonar = 41

 GENERAL_SuccessfullDetection_MAD = 42
 GENERAL_FailedDetection_MAD = 43

RADAR Specific Failure Cases (100-199)

 RADAR_RadarLOS_SurfaceWave = 101
 RADAR_RadarLOS = 103
 RADAR_RadarLOS_Terrain = 105
 RADAR_PureIlluminatorFailedDetection = 107
 RADAR_PureIlluminatorSuccessfulDetection = 109
 RADAR_SubUnitAbovePeriscopeDepthNotDetectable_BiologicsOrFalseContact = 111
 RADAR_SubUnitAbovePeriscopeDepthNotDetectable_NoPeriscopeOrSnorkel = 113
 RADAR_CantDetectPeriscope = 115
 RADAR_BlindCone = 117
 RADAR_LDSD_Limited_LookDown15deg = 119
 RADAR_LDSD_Limited_LookDown5deg = 121
 RADAR_Other = 123
 RADAR_ECM_Equation = 125
 RADAR_Successful_OTHBackscatter = 126
 RADAR_ABM_HorizonFailed = 127
 RADAR_ABM_HorizonSuccessful = 129

Visual Specific Failure Cases (200-299)

 VISUAL_VerticalViewAngle45deg = 201
 VISUAL_AverageCockpitVisibility_VerticalViewAngle25deg = 203

Page 169 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

 VISUAL_RNG_ExcellentCockpitVisibility = 205
 VISUAL_RNG_AverageCockpitVisibility = 207
 VISUAL_RNG_PoorCockpitVisibility = 209
 VISUAL_LOS = 211
 VISUAL_MaxNominalRange = 213
 VISUAL_MaxSpecificRange = 215
 VISUAL_ABM_Horizon_Failed = 217
 VISUAL_ABM_Horizon_Successful = 218

IR Specific Failure Cases (400-499)

 IR_LOSVisual = 401
 IR_MaxRange = 403
 IR_MaxRange_SpecificToTarget = 405
 IR_NoPeriscopeSearchCapability = 407
 IR_ABM_BeyondHorizon = 409

Ping-Intercept Specific Failure Cases (500-599)

 PING_LOSSonar = 501
 PING_MaxRange = 503
 PING_NoInterceptionFromAnyEmitter = 505

Active Sonar Specific Failure Cases (600-699)

 ACTIVESONAR_NotOperating = 601
 ACTIVESONAR_LOSSonar = 603
 ACTIVESONAR_AboveDeafSpeed = 605
 ACTIVESONAR_MaxRangeSpecificTarget = 607
 ACTIVESONAR_SuccessfulDirectDetection = 608
 ACTIVESONAR_SuccessfulIndirectDetection = 610
 ACTIVESONAR_SuccessfulBottomBounceDetection = 612
 ACTIVESONAR_SuccessfulDetectionThroughCZ = 614
 ACTIVESONAR_Other = 615

Passive Sonar Specific Failure Cases (700-799)

 PASSIVESONAR_NotOperating = 701
 PASSIVESONAR_SuccessfulPingIntercept = 702
 PASSIVESONAR_FailedPingIntercept = 703
 PASSIVESONAR_AboveDeafSpeed = 705
 PASSIVESONAR_LOSSonar = 707
 PASSIVESONAR_MaxNominalRange = 709
 PASSIVESONAR_SignalMaskedByAnother = 711
 PASSIVESONAR_MaxActualRange = 713
 PASSIVESONAR_LandmassInBetween = 715
 PASSIVESONAR_SuccessfulDetectionThroughCZ = 716
 PASSIVESONAR_CZBlockingAndNoDirectPath = 717

MAD Specific Failure Cases (800-899)

 MAD_UnitIsSubBiologics = 801
 MAD_UnitIsTorpedo = 803
 MAD_MaxEffectiveRange = 805
 MAD_IsNotBoatType = 807

Page 170 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

RADAR Illuminator Specific Failure Cases (900-999)

 RADARILLUMINATION_RadarHorizonLOS_SurfaceWave = 901
 RADARILLUMINATION_RadarHorizonLOS = 903
 RADARILLUMINATION_RadarHorizonLOS_Failed = 905
 RADARILLUMINATION_CoveringArc = 907
 RADARILLUMINATION_Other = 909
 RADARILLUMINATION_ECMEquation = 911
 RADARILLUMINATION_ABM_Horizon_Failure = 913
 RADARILLUMINATION_ABM_Horizon_Success = 914
 RADARILLUMINATION_OTH_Success = 916
 RADARILLUMINATION_OTH_Failure = 917

ESM Specific Failure Cases (1000-1099)

 ESM_RadarHorizonLOS_SurfaceWave = 1001
 ESM_RadarHorizonLOS = 1003
 ESM_RadarHorizonLOS_Terrain = 1005
 ESM_RWRvsJamming = 1007
 ESM_Equation = 1009
 ESM_OTHSW_Emitter_MaxRange = 1011
 ESM_OTHSW_Emitter_LOS = 1013
 ESM_EmitterNotActive = 1015
 ESM_IncompatibleFrequency = 1017
 ESM_EmitterNotOperating = 1019
 ESM_MaxRange = 1021
 ESM_Success = 1022
 ESM_Failure = 1023

Page 171 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Appendix 5: Custom Terrain Editing: How to make a fictional island

With the introduction of the SRTM3 terrain in CPE 2.0+, it is now much easier to alter the elevation

data for any area in the world; the classic example of this requirement is “I want to make a

hypothetical island in the middle of the ocean/sea”. So let us consider the steps necessary for this.

NOTE: Although it is technically possible to alter the terrain elevation of the legacy SRTM30PLUS

elevation data, the process has complications and gotchas that make it more trouble than it’s worth,

especially with the availability of the new SRTM3 elevation set. For this reason, only editing SRTM3

data is supported. This means that, as a pre-requisite, the add-on “HD pack” must be installed prior

to the procedure.

1) Altering the terrain elevation file(s)

The first step in creating our fictional island is to edit the actual terrain files. The SRTM3 files are

stored by default in the folder [writable root]\GIS\Terrain\SRTM3. Here is an example of said folder:

The data is split into individual files, each representing a 1x1-degree grid on earth. Their naming

makes it easy to identify which region each file represents; for example, the file N88W098 covers the

88 deg North, 98 deg West grid.

Page 172 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

IMPORTANT: Before proceeding, make sure that you back up all the terrain files that you intend to

modify. Assuming that you know in advance the coordinates of the area you will edit, this is a matter

of finding (through the naming scheme) and backing up only the files that are going to be altered. If

you are uncertain about which files to select, a complete backup of this folder is also possible (though

rather storage size-intensive).

The SRTM3 elevation files use the default SRTM file format, .HGT: https://www.lifewire.com/hgt-

file-2621580 . This is a popular digital elevation model (DEM) format throughout the GIS industry,

and is supported by numerous GIS or DEM applications such as ArcGIS, VTBuilder, DG Terrain

Viewer, Global Mapper etc.

So: Find the grid file of interest, unzip it if necessary (as shown in the screenshot above, elevation

grid files are by default packed in individual zip files to reduce their disk footprint) and load it up in

your GIS/DEM application of choice. Perform the desired elevation changes, and save the affected

grid file(s) again.

Overwrite the default elevation files with the modified copies, and restart CPE. Now if you hover the

map cursor in the area where you have raised the elevation level, the elevation value displayed by

the map cursor should map the changes you have made.

2) Applying a matching raster overlay

CPE’s multitude of bundled map raster layers are based on actual real maps and are thus matched to

the real-life global terrain elevation data. Thus, we now have a visual mismatch in the area where we

created our fictional island: The built-in map layers show us empty sea, but out map cursor is clearly

telling us there is above-ASL terrain elevation (and indeed we can place ground units on the raised

area). How do we reconcile the mismatch? By creating and applying a custom raster overlay.

The simplest way (an accurate way too) to create this overlay is to again use a GIS/DEM application

together with our custom elevation data. So again load the modified elevation grid, and use the

application to create and export a suitable georeferenced raster image:

CPE can use raw-bitmap (bmp, not recommended), jpeg- and png-format files for overlays.

Whatever the format, the overlay file must also have a matching geo-reference file (.bpw, .jgw and

.pgw respectively) in order to be accurately placed on CPE’s map.

https://www.lifewire.com/hgt-file-2621580
https://www.lifewire.com/hgt-file-2621580

Page 173 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Now we can go ahead and load this overlay in CPE:

Note that now the visual overlay matches our custom-defined elevation: We now actually see the

fictional island we created, and the elevation values displayed at the map-cursor databox match our

visual expectation.

3) Using CEZs to finetune terrain types & culture-height

Custom Environment Zones (CEZ) let the user create areas in which the terrain and weather data are

custom defined; this gives Command an unprecedented flexibility. The user can have a snowy area

adjacent to a warm desert and can even flood entire zones to simulate torrential rain or other

natural disasters.

It is also entirely possible to rise a landmass in the middle of the ocean and define a specific weather

for this new island.

The first step to create a CEZ is to define an area:

Page 174 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

After the area is defined, the user must open the Area & Reference Points Manager and click on

Cust. Env. Zones. (Green square)

This will open the CEZ panel in which the user can define and edit CEZ data.

To do that the procedure is:

1) Define the CEZ Name (Orange square)

2) Select all the points that will define the perimeter of the new Zone and add them with the “>”

button (Red Square)

3) Save so that the new CEZ is created (Purple Square)

Page 175 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

4) The user can now edit the environment of the CEZ by clicking on the Edit CEZ Data (Blue Square)

From this window plenty of data can be defined including, but not limited to, average temperature

of the zone, rainfall rate, thermal layer (ignored by the simulation if the area is overland) and terrain

type and altitude (Green Square)

Once this is done simply close this window. You will immediately see the selected data being

reflected on the map. In the attached picture we can see the just created CEZ (Snow and Ice)

displayed on the map and the minimap.

Page 176 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Another very requested feature was to be able to define a custom color and a custom transparency

for every CEZ, this can be done in the window “Area & Reference Point Manager”:

As mentioned, it’s also possible to generate a water area in a place that would normally be a

landmass. This is done in the same way as previously shown. The user only has to choose “Water” in

the Land Cover section of the CEZ area Editor, it’s also possible to define Thermal layer and CZ

Interval for the newly defined water area.

Page 177 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Again, all the changes are immediately shown on the map and every unit will treat the new water

area as any other water area on the map.

Page 178 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

Appendix 6: CPE Space Operations – Present and Future

Command includes an elaborate series of near-space assets with a particular emphasis on

intelligence satellites, both strictly military and “civilian” or dual-role.

Satellites are currently modelled as a search / surveillance /reconnaissance asset, capable of

detecting & tracking targets as well as performing follow-up surveillance (e.g. air-ops activity on

airfields) and battle-damage assessment (BDA) on existing contacts. Broad area scans as well as

close-look capability are modelled by having extra sensors that cannot perform search but have high

zoom ability (ie. observe in detail targets previously located by other means). Sensor swath, altitude

and slant-range limitations are all taken into account.

Users can place satellite platforms in true-to-life orbits using provided TLE data, either from the DB

or through scripting. The orbital characteristics can also by dynamically updated through scripting, so

it's possible to "mirror" sat movements in Command to match external-provided real-time data.

Satellites can be engaged and negated with ASATs (direct-ascent only, both surface and air-

launched) and high-energy lasers. Such engagements are evaluated as one-shot kills; there is

currently no gradual damage model for satellites as exists for other platform types.

Command provides a comprehensive UI for predicting future passes and dwell times over area-of-

interest. This allows effective coordination with other assets (for example, to provide pre-strike

reconnaissance or post-strike BDA). This is an example of the information in tabular format:

Page 179 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

The very same information can also be presented in graphical/chart form, to allow quicker

understanding of the future windows of availability:

Page 180 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

While the current space ops model obviously offers a lot of functionality, there is a diverse list of

additional capabilities that are available as future growth options. Such potential additions include:

• Sat-to-sat and sat-to-earth engagements using energy weapons (lasers / EMPs / HEMW etc.)

• Improved damage model (similar to extended aircraft damage model)

• Integration with other existing space-oriented software (e.g. AGI STK)

• Sat-to-sat engagements with kinetic weaponry (the weapons themselves essentially become

short-lived satellites)

• Space-to-earth engagements (e.g. orbital bombardment)

• Co-orbital ASATs

• Implementation of Kalman filtering on uncertain detections/contacts (e.g. SIGINT) to more

faithfully model generated "uncertainty area" of each contact

• Better modelling of "looking through soda-straw" FOV limitations (ie. cannot scan a wide

area if the cameras are close-focused on single target) and impact of spacecraft

maneuverability/point-ability on number of targets visited per pass segment. (Currently a sat

in Command can close-inspect all targets under its swatch in a single-pass, which is not

feasible in real life ops)

• Delta-V budgeting for altering orbital parameters ("We can shift that KH-11 to pass sooner

and at lower altitude over area-X, but it will cost 12% of its available fuel. Worth it?")

• A suitable user interface for per-pass intel collection tasking integrated/coordinated with

other intel assets (air/sea/land/SOF units etc.)

Page 181 of 181

COMMAND PROFESSIONAL EDITION USER MANUAL

• A substantially more space ops-centric user interface and main map (using Command’s

existing sim-core but with UI elements oriented to the needs & priorities of the space ops

community).

One such representative UI sample is shown:

